The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1<P<=7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n1^P + ... nK^P
where ni (i=1, ... K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112 + 62+ 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1, a2, ... aK } is said to be larger than { b1, b2, ... bK } if there exists 1<=L<=K such that ai=bi for i<L and aL>bL
If there is no solution, simple output "Impossible".
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
#include<cstdio> #include<vector> #include<algorithm> using namespace std; int n,k,p; int maxfacsum = -1; //fac存储的是0^p,1^p……不超过n的数,用来加给facsum和n比较 //ans是最优底数和(最大),temp是临时底数数组,和最优比较 vector<int> fac,ans,temp; int power(int x){ int ans = 1; for(int i = 0; i < p; i++){ ans *= x; } return ans; } void init(){ //将小于n的p次方数依次存在fac数组中 int temp = 0,i = 0; while(temp <= n){ fac.push_back(temp); temp = power(++i); } } //index表示访问的fac[index]数,nowK表示实际K是数相加 //facsum 表示当前选择底数之和,sum表示当前选中数之和 void DFS(int index,int nowK,int facsum,int sum) { if(sum == n && nowK == k){ if(facsum > maxfacsum ){ ans = temp; maxfacsum = facsum; } return; } if(sum > n || nowK > k) return; if(index - 1 >= 0){ temp.push_back(index); DFS(index,nowK+1,facsum+index,sum+fac[index]); temp.pop_back(); DFS(index - 1,nowK,facsum,sum); } } int main(){ scanf("%d%d%d",&n,&k,&p); init(); DFS(fac.size()-1,0,0,0); if(maxfacsum == -1) printf("Impossible "); else{ printf("%d = %d^%d",n,ans[0],p); for(int i = 1; i < ans.size(); i++){ printf(" + %d^%d",ans[i],p); } } return 0; }