前言
三角函数中的给角求值类问题,大多给定的是分式形式,或者可以化为分式形式的,比如含有弦和切,当切化弦后就变成了分式;并且这类题目往往需要将非特殊角拆分,然后最后一步约掉含有非特殊角的代数式,就得到了最终的值。
相关变形
-
切化弦[整式变分式],1的代换,分式通分约分,根式升幂;配方展开,提取公因式,公式的逆用,变用,
-
常用的互余、互补代换:(sin70^{circ}=cos20^{circ}),(cos40^{circ}=sin50^{circ});(sin140^{circ}=sin40^{circ}),(cos110^{circ}=-sin70^{circ}=-cos20^{circ});
-
常见的角的拆分:(47^{circ}=17^{circ}+30^{circ});(8^{circ}=15^{circ}-7^{circ});
(1+sin heta+cos heta=(1+cos heta)+sin heta=2cos^2cfrac{ heta}{2}+2sincfrac{ heta}{2}coscfrac{ heta}{2})
(1+sin heta-cos heta=(1-cos heta)+sin heta=2sin^2cfrac{ heta}{2}+2sincfrac{ heta}{2}coscfrac{ heta}{2})
- 常见的互余,倍角等
((cfrac{pi}{4}+ heta)+(cfrac{pi}{4}- heta)=cfrac{pi}{2});((cfrac{pi}{3}+ heta)+(cfrac{pi}{6}- heta)=cfrac{pi}{2});
(2xpmcfrac{pi}{2}=2(xpmcfrac{pi}{4}));(2alphapmcfrac{pi}{3}=2(alphapmcfrac{pi}{6}));
- 常见的配角技巧:
(2alpha=(alpha+eta)+(alpha-eta));(2eta=(alpha+eta)-(alpha-eta));
(alpha=(alpha+eta)-eta);(eta=alpha-(alpha-eta));
(alpha=cfrac{alpha+eta}{2}+cfrac{alpha-eta}{2});(eta=cfrac{alpha+eta}{2}-cfrac{alpha-eta}{2});
典例剖析
分析:(cfrac{3-sin70^{circ}}{2-cos^210^{circ}}=cfrac{3-cos20^{circ}}{2-cos^210^{circ}}=cfrac{3-(2cos^210^{circ}-1)}{2-cos^210^{circ}}=cfrac{2(2-cos^210^{circ})}{2-cos^210^{circ}}=2)
分析:(4cos50^{circ}-tan40^{circ}=4cos50^{circ}-cfrac{sin40^{circ}}{cos40^{circ}}=cfrac{4cos50^{circ}cos40^{circ}-sin40^{circ}}{cos40^{circ}}=cfrac{4sin40^{circ}cos40^{circ}-sin40^{circ}}{cos40^{circ}})
(=cfrac{2sin80^{circ}-sin40^{circ}}{cos40^{circ}}=cfrac{2cos10^{circ}-sin40^{circ}}{cos40^{circ}}=cfrac{2cos(40^{circ}-30^{circ})-sin40^{circ}}{cos40^{circ}})
(=cfrac{2cos40^{circ}cdot cfrac{sqrt{3}}{2}+2sin40^{circ}cdot cfrac{1}{2}-sin40^{circ}}{cos40^{circ}}=sqrt{3}).
分析:(cfrac{sin8^{circ}+sin7^{circ}cos15^{circ}}{cos8^{circ}-sin7^{circ}sin15^{circ}})
(=cfrac{sin(15^{circ}-7^{circ})+sin7^{circ}cos15^{circ}}{cos(15^{circ}-7^{circ})-sin7^{circ}sin15^{circ}})
(=cfrac{sin15^{circ}}{cos15^{circ}}=tan15^{circ}=2-sqrt{3})。
分析:(coscfrac{pi}{17}cdot coscfrac{2pi}{17}cdot coscfrac{4pi}{17}cdot coscfrac{8pi}{17}=cfrac{2sincfrac{pi}{17}coscfrac{pi}{17}cdot coscfrac{2pi}{17}cdot coscfrac{4pi}{17}cdot coscfrac{8pi}{17}}{2sincfrac{pi}{17}})
(=cfrac{sincfrac{2pi}{17}cdot coscfrac{2pi}{17}cdot coscfrac{4pi}{17}cdot coscfrac{8pi}{17}}{2sincfrac{pi}{17}}=cfrac{2sincfrac{2pi}{17}cdot coscfrac{2pi}{17}cdot coscfrac{4pi}{17}cdot coscfrac{8pi}{17}}{2^2sincfrac{pi}{17}})
(=cfrac{2sincfrac{4pi}{17}cdot coscfrac{4pi}{17}cdot coscfrac{8pi}{17}}{2^3sincfrac{pi}{17}}=cfrac{2sincfrac{8pi}{17}cdot coscfrac{8pi}{17}}{2^4sincfrac{pi}{17}})
(=cfrac{sincfrac{16pi}{17}}{2^4sincfrac{pi}{17}}=cfrac{sincfrac{pi}{17}}{2^4sincfrac{pi}{17}}=cfrac{1}{16})
分析:由题目可知,((sinx+cosx)^2=(cfrac{sqrt{2}}{2})^2),即(1+2sinxcosx=cfrac{1}{2}),故(2sinxcosx=-cfrac{1}{2})
(sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sinx^2cos^2x=1-2sinx^2cos^2x=1-cfrac{1}{2}(2sinxcosx)^2=1-cfrac{1}{8}=cfrac{7}{8})
分析:(cfrac{sin47^{circ}-sin17^{circ}cos30^{circ}}{cos17^{circ}})
(=cfrac{sin(30^{circ}+17^{circ})-sin17^{circ}cos30^{circ}}{cos17^{circ}})
(=cfrac{sin30^{circ}cos17^{circ}}{cos17^{circ}})
(=sin30^{circ}=cfrac{1}{2})。
分析:原式(=cfrac{2cos^210^{circ}}{2cdot 2sin10^{circ}cos10^{circ}}-sin10^{circ}(cfrac{cos5^{circ}}{sin5^{circ}}-cfrac{sin5^{circ}}{cos5^{circ}}))
(=cfrac{cos10^{circ}}{2sin10^{circ}}-sin10^{circ}(cfrac{cos^25^{circ}-sin^25^{circ}}{sin5^{circ}cos5^{circ}}))
(=cfrac{cos10^{circ}}{2sin10^{circ}}-sin10^{circ}cfrac{2cos10^{circ}}{2sin5^{circ}cos5^{circ}}))
(=cfrac{cos10^{circ}}{2sin10^{circ}}-2cos10^{circ})
(==cfrac{cos10^{circ}}{2sin10^{circ}}-cfrac{2cos10^{circ}cdot 2sin10^{circ}}{2sin10^{circ}})
(=cfrac{cos10^{circ}-2sin20^{circ}}{2sin10^{circ}})
(=cfrac{cos10^{circ}-2sin(30^{circ}-10^{circ})}{2sin10^{circ}})
(=cfrac{cos10^{circ}-cos10^{circ}+2cdot cfrac{sqrt{3}}{2}sin10^{circ}}{2sin10^{circ}})
(=cfrac{sqrt{3}}{2})。
分析:原式(=cfrac{cos10^{circ}-sqrt{3}cos(100^{circ})}{sqrt{1-sin10^{circ}}})
(=cfrac{cos10^{circ}+sqrt{3}sin10^{circ}}{sqrt{1-sin10^{circ}}})
(=cfrac{cos10^{circ}+sqrt{3}sin10^{circ}}{sqrt{(cos5^{circ}-sin5^{circ})^2}})
(=cfrac{cos10^{circ}+sqrt{3}sin10^{circ}}{(cos5^{circ}-sin5^{circ})^2})
(=cfrac{2sin(10^{circ}+30^{circ})}{-sqrt{2}sin(5^{circ}-45^{circ})})
(=cfrac{2sin40^{circ}}{sqrt{2}sin40^{circ}}=sqrt{2})。
分析:原式(=cfrac{cos40^{circ}}{cos25^{circ}cdot sqrt{(sin20^{circ}-cos20^{circ})^2}})
(=cfrac{cos40^{circ}}{cos25^{circ}cdot |sin20^{circ}-cos20^{circ}|})
(=cfrac{cos^220^{circ}-sin^220^{circ}}{cos25^{circ}(cos20^{circ}-sin20^{circ})})
(=cfrac{cos20^{circ}+sin20^{circ}}{cos25^{circ}})
(=cfrac{sqrt{2}sin(20^{circ}+45^{circ})}{cos25^{circ}})
(=cfrac{sqrt{2}sin65^{circ}}{cos25^{circ}}=sqrt{2}).
分析:原式=(cfrac{sqrt{3}cfrac{sin12^{circ}}{cos12^{circ}}-3cfrac{cos12^{circ}}{cos12^{circ}}}{2(2cos^212^{circ}-1)sin12^{circ}})
(=cfrac{sqrt{3}cdot cfrac{sin12^{circ}-sqrt{3}cos12^{circ}}{cos12^{circ}}}{2cos24^{circ}sin12^{circ}})
(=cfrac{sqrt{3}cdot 2sin(12^{circ}-60^{circ})}{2cos24^{circ}sin12^{circ}cos12^{circ}})
(=cfrac{2sqrt{3}sin(-48^{circ})}{sin24^{circ}cos24^{circ}}=-4sqrt{3})。
分析:由于(t=2sin18^{circ}),故有
(cfrac{2cos^{2}27^{circ}-1}{tsqrt{4-t^{2}}}=cfrac{cos54^{circ}}{2sin18^{circ}sqrt{4-4sin^{2}18^{circ}}}=cfrac{cos54^{circ}}{2sin18^{circ}sqrt{4(1-sin^{2}18^{circ})}})
(=cfrac{sin36^{circ}}{2sin18^{circ}cdot 2cos18^{circ}}=cfrac{sin36^{circ}}{4sin18^{circ}cos18^{circ}}=cfrac{1}{2}),故选(D).