• 正方体的截面


    前言

    案例研究

    • 正方体截面的探究

    【目的】结合正方体截面设计的问题串,引导学生完成探究、发现、证明新问题的过程,积累数学探究的经验。

    【情境】用一个平面截正方体,截面的形状将会是什么样的?启发学生提出逐渐深入的系列问题,引导学生进行逐渐深刻的思考。

    学生可以自主或在教师引导下提出一些问题,例如:

    (1)给出截面图形的分类原则,找到截得这些形状截面的方法,面出这些截面的示意图。

    例如,可以按照截面图形的边数进行分类,比如三角形,四边形,五边形,六边形等等。

    (2)如果截面是三角形,可以截出几类不同的三角形?为什么?

    (3)如果截面是四边形,可以截出几类不同的四边形?为什么?

    (4)还能截出哪些多边形?为什么?然后进一步探讨:

    (5)能否截出正五边形?为什么?

    (6)能否截出直角三角形?为什么?

    (7)有没有可能截出边数超过6的多边形?为什么?

    (8)是否存在正六边形的截面?为什么?

    最后思考:

    (9)截面面积最大的三角形是什么形状的三角形?为什么?

    【分析】这是一个跨度很大的数学问题串,可以针对不同学生,设计不同的教学方式,通过多种方法实施探究。例如,

    ①可以通过切萝卜块观察,启发思路;

    ②也可以在透明的正方体盒子中注入有颜色的水,观察不同摆放位置、不同水量时的液体表面的形状;

    还可以借助信息技术直观快捷地展示各种可能的截面。

    但是,观察不能代替证明。探究的难点是分类找出所有可能的截面,并证明哪些形状的截面一定存在或者一定不存在。可以鼓励学生通过操作观察,形成猜想,证现最证。龙这样逐渐深入的探究过程,有利于培养学生8问题、分类讨论、作图表达、推理论证等能力,在具体情做事限升直观想象、数学抽象、逻辑推理等素养,积累教学探的洋么、

    典例剖析

    正方体 (ABCD-A_{1}B_{1}C_{1}D_{1})的棱长为(1), 动点(P)(Q) 分别在棱(BC)(CC_{1}) 上, 过点 (A)(P)(Q) 的平面截该正方体所得的截面记为(S),设(BP=x)(CQ=y),其中(x)(yin[0,1]),下列命题:

    ①当 (x=0) 时, (S) 为矩形,其面积最大为 (1)

    分析:当 (x=0) 时, (S) 为矩形,其面积最大时为矩形(ABC_1D_1),故最大面积为(sqrt{2}),故①错误;

    ②当 (x=y=cfrac{1}{2}) 时, (S) 为等腰梯形;

    分析:如上图,由于(x=y=cfrac{1}{2}),容易证明(AP=D_1Q),而(PQ//AD_1),故截面(S) 为等腰梯形;故②正确;

    ③当 (x=cfrac{1}{2})(yin(cfrac{1}{2}, 1)) 时, 设 (S) 与棱 (C_{1}D_{1}) 的交点为 (R),则 (RD_{1}=2-cfrac{1}{y})

    分析:设 (S) 与棱 (C_{1}D_{1}) 的交点为 (R),延长(DD_1),使(DD_1cap QR=N)

    连接(AN)(A_1D_1)(T),连接(TR),可证(AN//PQ)一个平面和两个平行平面都相交,则所得的交线互相平行;(quad)

    故可知( riangle PCQsim riangle AD_1N),则(cfrac{PC}{AD}=cfrac{CQ}{DN}=cfrac{1}{2})

    (cfrac{y}{DN}=cfrac{1}{2}),故(DN=2y),则(D_1N=2y-1)

    又由于( riangle NRD_1sim riangle QRC_1),可得(cfrac{C_1R}{D_1R}=cfrac{C_1Q}{D_1N})

    (RD_1=x),即(cfrac{1-x}{x}=cfrac{1-y}{2y-1}),利用合比定理,得到

    (cfrac{1-x+x}{x}=cfrac{1-y+2y-1}{2y-1}),即(cfrac{1}{x}=cfrac{y}{2y-1})

    可得(x=RD_1=2-cfrac{1}{y}),故③正确;

    ④当 (y=1) 时, 以 (B_1)为顶点,(S) 为底面的棱锥的体积为定值(cfrac{1}{3}); 其中正确的命题为_______________.

    分析:当 (y=1) 时, 以 (B_1)为顶点,(S) 为底面的棱锥(B_1-PC_1MA)的体积为

    (V_{B_1-PC_1MA}=2V_{B_1-PC_1M}=2V_{P-B_1C_1M}=2 imescfrac{1}{3} imescfrac{1}{2} imes 1 imes 1 imes 1=cfrac{1}{3}),故④正确;

    综上所述,正确的命题为②③④;

    本文来自博客园,作者:静雅斋数学,转载请注明原文链接:https://www.cnblogs.com/wanghai0666/p/13887703.html

  • 相关阅读:
    Centos7 下安装python3.7
    mysql数据库定时备份脚本
    helm 安装EFK(Elasticsearch+Filebeat+Kibana)收集容器日志
    kubernetes Ingress-nginx 配置TLS
    Kubernetes核心原理(三)之Scheduler
    Kubernetes核心原理(二)之Controller Manager
    预习作业(四)
    预习作业(三)
    预习作业(二)
    预习作业(一)
  • 原文地址:https://www.cnblogs.com/wanghai0666/p/13887703.html
Copyright © 2020-2023  润新知