前言
思考探究
分析:假设题目中的两个式子都成立,则由①( an(alpha+2eta)=-sqrt{3})得到,
( an(alpha+2eta)= an2(cfrac{alpha}{2}+eta)=cfrac{2 an(cfrac{alpha}{2}+eta)}{1- an^2(cfrac{alpha}{2}+eta)}=-sqrt{3});
即(sqrt{3} an^2(cfrac{alpha}{2}+eta)-2 an(cfrac{alpha}{2}+eta)-sqrt{3}=0),
即([ an(cfrac{alpha}{2}+eta)-sqrt{3}][sqrt{3} an(cfrac{alpha}{2}+eta)+1]=0),
从而解方程得到,( an(cfrac{alpha}{2}+eta)=sqrt{3})或者( an(cfrac{alpha}{2}+eta)=-cfrac{sqrt{3}}{3}),[1]
由于(alpha,etain (0,cfrac{pi}{2})),以及( ancfrac{alpha}{2} aneta=2-sqrt{3})可知,
( ancfrac{alpha}{2}>0),( aneta>0),故( ancfrac{alpha}{2}+ aneta>0),
又由于( an(cfrac{alpha}{2}+eta)=cfrac{ ancfrac{alpha}{2}+ aneta}{1- ancfrac{alpha}{2}cdot aneta}),分子和分母都是正数,
故只能是( an(cfrac{alpha}{2}+eta)=sqrt{3});
由(cfrac{ ancfrac{alpha}{2}+ aneta}{1- ancfrac{alpha}{2}cdot aneta}=sqrt{3})可得,
( ancfrac{alpha}{2}+ aneta=sqrt{3}(1-2+sqrt{3})=3-sqrt{3}),
又( ancfrac{alpha}{2}cdot aneta=2-sqrt{3}),
逆用韦达定理,则( ancfrac{alpha}{2})和( aneta)是方程(x^2-(3-sqrt{3})x+2-sqrt{3}=0)的两个根;
由于方程能分解为([x-(2-sqrt{3})](x-1)=0),则方程的两个根为(x=2-sqrt{3})和(x=1);
故(left{egin{array}{l}{ ancfrac{alpha}{2}=2-sqrt{3}}\{ aneta=1}end{array} ight.) 解得(left{egin{array}{l}{alpha=cfrac{pi}{6}}\{eta=cfrac{pi}{4}}end{array} ight.)
或者(left{egin{array}{l}{ ancfrac{alpha}{2}=1}\{ aneta=2-sqrt{3}}end{array} ight.) 解得(left{egin{array}{l}{alpha=cfrac{pi}{2}}\{eta=cfrac{pi}{12}}end{array} ight.) 舍去;
故存在(alpha=cfrac{pi}{6}),(eta=cfrac{pi}{4}),使得已知的两个式子同时成立;
(sin^245^{circ}+cos^275^{circ}+sin45^{circ}cdotcos75^{circ});
(sin^236^{circ}+cos^266^{circ}+sin36^{circ}cdotcos66^{circ});
(sin^215^{circ}+cos^245^{circ}+sin15^{circ}cdotcos45^{circ});
(sin^2(-15^{circ})+cos^215^{circ}+sin(-15^{circ})cdotcos15^{circ});
(sin^2(-45^{circ})+cos^2(-15^{circ})+sin(-45^{circ})cdotcos(-15^{circ}));
(1).试从上述五个式子中任选一个式子,求出此常数;
(sin^245^{circ}+cos^275^{circ}+sin45^{circ}cdotcos75^{circ});
(=(cfrac{sqrt{2}}{2})^2+(cfrac{sqrt{6}-sqrt{2}}{4})^2+cfrac{sqrt{2}}{2} imescfrac{sqrt{6}-sqrt{2}}{4}=cfrac{3}{4});
(2).根据(1)的结果,将该同学的发现推广为三角恒等式,并证明;
观察上述五个式子中涉及的两个角,可正可负也可零,且两个角相差(30^{circ}),故归纳得到两个角分别为( heta)和( heta+30^{circ});
仿照原式,猜想如下:
(sin^2 heta+cos^2( heta+30^{circ})+sin hetacdotcos( heta+30^{circ})=cfrac{3}{4});
证明:(sin^2 heta+cos^2( heta+30^{circ})+sin hetacdotcos( heta+30^{circ}))
(=sin^2 heta+[cos hetacdot cfrac{sqrt{3}}{2}-sin hetacdot cfrac{1}{2}]^2+sin heta[cos hetacdot cfrac{sqrt{3}}{2}-sin hetacdot cfrac{1}{2}])
(=sin^2 heta+cfrac{1}{4}sin^2 heta+cfrac{3}{4}cos^2 heta-cfrac{sqrt{3}}{2}sin hetacos heta+cfrac{sqrt{3}}{2}sin hetacos heta-cfrac{1}{2}sin^2 heta)
(=cfrac{3}{4}sin^2 heta+cfrac{3}{4}cos^2 heta=cfrac{3}{4}),证毕;
①当(omega=1)时,( riangle ABC)的面积的最小值为_____________.
分析:当(omega=1)时,做出两个函数的示意图,由图像分析可知,
如图所示的情形,应该是( riangle ABC)的面积取得最小值时的三点的位置分布情形之一;
此时(A(cfrac{pi}{4},1)),(B(cfrac{9pi}{4},1)),(C(cfrac{5pi}{4},-1)),
故三角形的底边长(|AB|=2pi),高(h=2),故(S_{ riangle ABC}=cfrac{1}{2} imes 2pi imes 2=2pi);
②若存在( riangle ABC)为等腰直角三角形,则(omega)的最小值为______________.
分析:首先分析得到,若存在( riangle ABC)为等腰直角三角形,则下图是其中的情形之一。
则由我们作图时得到的点(D(cfrac{2pi}{omega},0))和点(E(cfrac{pi}{omega},0))可知,
此时(A(cfrac{pi}{4omega},1)),(B(cfrac{9pi}{4omega},1)),(C(cfrac{5pi}{4omega},-1)),且只能是(angle C=cfrac{pi}{2}),
故(cfrac{1}{2}|AB|=h),(cfrac{1}{2}|AB|=cfrac{pi}{omega}),(h=2)没有变化[图像只是横向伸缩,纵向没有伸缩],
即(cfrac{pi}{omega}=2),解得(omega=cfrac{pi}{2}),故(omega)的最小值为(omega=cfrac{pi}{2}),
以下的四步求解是为了排除( an(cfrac{alpha}{2}+eta)=-cfrac{sqrt{3}}{3})的可能性; ↩︎