前言
模板函数
- 核心的模板函数(y=sinx),其性质如下:
定义域:(xin R);
值 域:(y=sinxin [-1,1])
单调性:单增区间 ([2kpi-cfrac{pi}{2},2kpi+cfrac{pi}{2}](kin Z)); 单减区间 ([2kpi+cfrac{pi}{2},2kpi+cfrac{3pi}{2}](kin Z));
奇偶性:奇函数;(sin(-x)=-sinx);
周期性:(T=2pi);
对称性:对称轴(x=kpi+cfrac{pi}{2}(kin Z));对称中心((kpi,0)(kin Z));
零 点:(x=kpi (kin Z));
最 值:(x=2kpi+cfrac{pi}{2})时,(y_{max}=1);(x=2kpi-cfrac{pi}{2})时,(y_{min}=-1);
五点法作图:
(x) | (0) | (cfrac{pi}{2}) | (pi) | (cfrac{3pi}{2}) | (2pi) |
---|---|---|---|---|---|
(f(x)=sinx) | (0) | (1) | (0) | (-1) | (0) |
(点的坐标) | ((0,0)) | ((cfrac{pi}{2},1)) | ((pi,0)) | ((cfrac{3pi}{2},-1)) | ((2pi,0)) |
效果图如下:
使用示例
当研究清楚了上述的函数(y=sinx)的性质后,我们就能够以此为依托,研究更复杂的正弦型函数的各种性质了。
我们以(y=2sin(2x+cfrac{pi}{6})+1)为例子加以说明;
定义域
:(xin R);
值域
:由于(-1leqslant sin(2x+cfrac{pi}{6})leqslant 1),
故((-1) imes 2+1leqslant 2sin(2x+cfrac{pi}{6})+1leqslant 1 imes 2+1),即(-1leqslant yleqslant 3);
单调性
:由于(2)倍和后边的(+1)不影响单调性,故利用(y=sin(2x+cfrac{pi}{6}))求单调区间;
令(2kpi-cfrac{pi}{2}leqslant 2x+cfrac{pi}{6}leqslant 2kpi+cfrac{pi}{2}),(kin Z),
解得单调递增区间为([kpi-cfrac{pi}{3},kpi+cfrac{pi}{6}]),((kin Z));
令(2kpi+cfrac{pi}{2}leqslant 2x+cfrac{pi}{6}leqslant 2kpi+cfrac{3pi}{2}),(kin Z),
解得单调递减区间为([kpi+cfrac{pi}{6},kpi+cfrac{2pi}{3}]),((kin Z));
奇偶性
:由于(f(0)
eq 0),且(f(0))没有取到最值,故函数没有奇偶性;
周期性
:(T=cfrac{2pi}{2}=pi);
对称性
:比如求对称轴方程,此时后边的(+1)不影响其对称性,前边的2倍也不影响,
故利用(y=sin(2x+cfrac{pi}{6}))求对称轴方程,
令(2x+cfrac{pi}{6}=kpi+cfrac{pi}{2}(kin Z)),解得对称轴方程为:(x=cfrac{kpi}{2}+cfrac{pi}{6}(kin Z)),
求对称中心,先利用(y=sin(2x+cfrac{pi}{6}))求对称中心,最后补充(+1);
令(2x+cfrac{pi}{6}=kpi(kin Z)),解得(x=cfrac{kpi}{2}-cfrac{pi}{12}(kin Z)),
故对称中心坐标为((cfrac{kpi}{2}-cfrac{pi}{12},1)(kin Z))
零点
:令(y=2sin(2x+cfrac{pi}{6})+1=0),即(sin(2x+cfrac{pi}{6})=-cfrac{1}{2}),
则(2x+cfrac{pi}{6}=2kpi-cfrac{pi}{6}(kin Z))或(2x+cfrac{pi}{6}=2kpi-cfrac{5pi}{6}(kin Z))
即(x=kpi-cfrac{pi}{6}(kin Z))或(x=kpi-cfrac{pi}{2}(kin Z)),
最值
:(y_{min}=-1),(y_{max}=3)
五点法作图
:自定周期的起止点;函数为(f(x)=2sin(2x+cfrac{pi}{6})+1)
(x) | (-cfrac{pi}{12}) | (cfrac{2pi}{12}=cfrac{pi}{6}) | (cfrac{5pi}{12}) | (cfrac{8pi}{12}=cfrac{2pi}{3}) | (cfrac{11pi}{12}) |
---|---|---|---|---|---|
(2x+cfrac{pi}{6}) | (0) | (cfrac{pi}{2}) | (pi) | (cfrac{3pi}{2}) | (2pi) |
(sin(2x+frac{pi}{6})) | (0) | (1) | (0) | (-1) | (0) |
(f(x)) | (1) | (3) | (1) | (-1) | (1) |
(点的坐标) | ((-cfrac{pi}{12},1)) | ((cfrac{pi}{6},3)) | ((cfrac{5pi}{12},1)) | ((cfrac{2pi}{3},-1)) | ((cfrac{11pi}{12},1)) |
效果图如下:
分析:在上题作图的基础上修正如下即可,
(x) | (0) | (cfrac{2pi}{12}=cfrac{pi}{6}) | (cfrac{5pi}{12}) | (cfrac{8pi}{12}=cfrac{2pi}{3}) | (cfrac{11pi}{12}) | (pi) |
---|---|---|---|---|---|---|
(2x+cfrac{pi}{6}) | (cfrac{pi}{6}) | (cfrac{pi}{2}) | (pi) | (cfrac{3pi}{2}) | (2pi) | (cfrac{13pi}{6}) |
(sin(2x+frac{pi}{6})) | (cfrac{1}{2}) | (1) | (0) | (-1) | (0) | (cfrac{1}{2}) |
(f(x)) | (2) | (3) | (1) | (-1) | (1) | (2) |
(坐标) | ((0,2)) | ((cfrac{pi}{6},3)) | ((cfrac{5pi}{12},1)) | ((cfrac{2pi}{3},-1)) | ((cfrac{11pi}{12},1)) | ((pi,2)) |
效果图如下:待整理;