• POJ 3169 Layout (差分约束)


    Layout
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 10245   Accepted: 4931

    Description

    Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 

    Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 

    Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

    Input

    Line 1: Three space-separated integers: N, ML, and MD. 

    Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 

    Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

    Output

    Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

    Sample Input

    4 2 1
    1 3 10
    2 4 20
    2 3 3

    Sample Output

    27

    Hint

    Explanation of the sample: 

    There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 

    The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
    /*
     * POJ 3169 Layout
     * 给你n条奶牛,其中一些两个距离不能超过D,而有些必须大于等于D,问1到n的最大距离
     *
     * 典型的差分约束,全部化为小于等于的不等式,跑SPFA即可,由于存在负环,不能用Dijkstra。
     */
    
    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #include <queue>
    using namespace std;
    
    const int MAXN = 1010;
    const int MAXE = 20020;
    const int INF = 0x3f3f3f3f;
    
    struct Edge
    {
        int to;
        int w;
        int next;
    }edge[MAXE];
    int head[MAXN],tol;
    bool vis[MAXN];
    int cnt[MAXN];
    int Q[MAXN];
    int dis[MAXN];
    
    void init()
    {
        tol=0;
        memset(head,-1,sizeof(head));
    }
    void addedge(int u,int v,int w)//加边
    {
        edge[tol].to=v;
        edge[tol].w=w;
        edge[tol].next=head[u];
        head[u]=tol++;
    }
    bool SPFA(int st,int n)
    {
        int front=0,rear=0;
        for(int v=1;v<=n;v++)//初始化
        {
            if(v==st)
            {
                Q[rear++]=v;
                vis[v]=true;
                cnt[v]=1;
                dis[v]=0;
            }
            else
            {
                vis[v]=false;
                cnt[v]=0;
                dis[v]=INF;
            }
        }
        while(front!=rear)
        {
            int u=Q[front++];
            vis[u]=false;
            if(front>=MAXN)front=0;
            for(int i=head[u];i!=-1;i=edge[i].next)
            {
                int v=edge[i].to;
                if(dis[v]>dis[u]+edge[i].w)
                {
                    dis[v]=dis[u]+edge[i].w;
                    if(!vis[v])
                    {
                        vis[v]=true;
                        Q[rear++]=v;
                        if(rear>=MAXN)rear=0;
                        if(++cnt[v]>n) return false;
                    }
                }
            }
        }
        return true;
    }
    
    int main()
    {
        int n,ml,md;
        int u,v,w;
        scanf("%d%d%d",&n,&ml,&md);
        init();
        while(ml--)
        {
            scanf("%d%d%d",&u,&v,&w);
            addedge(u,v,w);
        }
        while(md--)
        {
            scanf("%d%d%d",&u,&v,&w);
            addedge(v,u,-w);
        }
        if(!SPFA(1,n)) printf("-1
    ");
        else if(dis[n]==INF) printf("-2
    ");
        else printf("%d
    ",dis[n]);
        return 0;
    }
  • 相关阅读:
    Oracle错误——ORA-03113:通信通道的文件结尾
    ASM的failgroup的含义
    手工删除卸载oracle 11g rac的具体步骤(方法)
    手工删除卸载oracle 11g rac的具体步骤(方法)
    oracle RAC 更换存储迁移数据(在线迁移ASM磁盘组)测试
    Oracle kernel parameters tuning on Linux
    oracle: default role 详解(转)
    类模板深度剖析
    类模板的概念和意义
    深入理解函数模板
  • 原文地址:https://www.cnblogs.com/wangdongkai/p/5854170.html
Copyright © 2020-2023  润新知