• 限流的简单使用及学习


    前言

    最近系统刚做了一次大的重构,以及下游子服务都做了升级改造。

    整个系统间的调用都是采用spring cloud这一套去实现的。我所负责的为业务服务端,专门为web端和pc端提供接口调用。在服务刚上线的一段时间,出现了一次雪崩的事件,整个调用链路如下:

    调用链路很简单,因为文本匹配服务 需要分词,匹配,已经从ES获取匹配后的术语语料等数据,所以会有请求挤压,一段时间类服务就崩溃了。为了紧急处理这种情况,所以需要再业务方加上限流机制(后续优化下游的匹配算法)。刚好也针对于这种情况,自己来学习下几种限流的方式。

    限流算法分类

    参见的限流算法有:令牌桶,漏桶,计数器。

    计数器限流算法

    计数器是最简单也是最粗暴的一种限流算法,同时也是比较常用的,主要用来限制总并发数,比如数据库连接池大小、线程池大小、程序访问并发数等都是使用计数器算法。

    1. 使用Redis的限流做法:
    /**
     * 限流方法,通过redis进行方法级别的限流措施。
     */
    @Service
    @Transactional
    @Slf4j
    public class MethodThrottleService {
    
        @Autowired
        private RedisTemplate<String, String> redisTemplate;
    
        /**
         * 通过指定key值获取是否是合法请求,如果在规定缓存时间内仍然存在该key值,说明该请求不合法
         *
         * @param key        请求key值
         * @param expireTime 过期时间
         * @param timeUnit   过期时间单位
         * @return 是否过期 true || false
         */
        public Boolean validateKeyRequest(String key, int expireTime, TimeUnit timeUnit) {
            ValueOperations<String, String> ops = redisTemplate.opsForValue();
            String result = ops.get(key);
            if (StringUtils.isNotBlank(result)) {
                return false;
            }
    
            ops.set(key, key, expireTime, timeUnit);
            return true;
        }
    
        /**
         * 通过指定用户和方法名判断请求是否合法请求,如果在规定缓存时间内仍然存在该key值,说明该请求不合法
         *
         * @param methodName 方法名
         * @param perCount   规定时间请求的次数
         * @param iolId      用户名
         * @return 是否过期 true || false
         */
        public Boolean validateUserRequest(String methodName, int perCount, String iolId, int expireTime, TimeUnit timeUnit) {
            ValueOperations<String, String> ops = redisTemplate.opsForValue();
            String cacheKey = getCacheKey(iolId, methodName);
            Long requestCount = ops.increment(cacheKey, 1);
            log.info("requestCount = {}", requestCount);
            redisTemplate.expire(cacheKey,expireTime, timeUnit );
            if (requestCount >= perCount) {
                log.info("MethodThrottle exceed weight limit! iolId = {}, methodName = {}, requestCount = {}", iolId, methodName, requestCount);
                return false;
            }
    
            return true;
        }
    
        /**
         * 获取缓存的key值
         * @param targetName 目标名称
         * @param methodName 方法名称
         * @return 缓存key
          */
        private String getCacheKey(String targetName, String methodName) {
            StringBuilder sb = new StringBuilder("");
            sb.append("limitRate.").append(targetName).append(".").append(methodName);
            return sb.toString();
        }
    }
    

    使用redis限流,可以针对于用户+方法名进行精准限流。同时可以根据请求key值进行限流,目的是限定规定时间类同样参数的请求次数。
    但是redis 限流会有很大的性能瓶颈,频繁的写入,读取,过期会对redis性能损耗比较大。不建议此种方法。
    另外计数器还可以使用AtomicIntegerSemaphore,具体就不在这列出代码了,具体可以参考:Java限流策略-简书

    令牌桶算法

    令牌桶算法是一个存放固定容量的令牌的桶,按照固定速率往桶里添加令牌。令牌桶算法的描述如下:(参考开涛:亿级流量网站架构核心技术 中第4章部分内容)
    如下:

    • 假设限制2r/s,则按照500毫秒的固定速率往桶中添加令牌;
    • 桶中最多存放b个令牌,当桶满时,新添加的令牌被丢弃或拒绝;
      -当一个n个字节大小的数据包到达,将从桶中删除n个令牌,接着数据包被发送到网络上;
      -如果桶中的令牌不足n个,则不会删除令牌,且该数据包将被限流(要么丢弃,要么缓冲区等待)。


    备注(10r/s: 一秒钟10令牌放入桶中)
    对于令牌桶限流,我们可以使用Guava开源得到RateLimiter 来做,具体可以参考如下代码:

    //每秒只发出10个令牌
    RateLimiter rateLimiter = RateLimiter.create(10);
    /**
     * 尝试获取令牌
     *
     * @return 获取令牌是否成功 true || false
     */
    public boolean tryAcquire() {
        return rateLimiter.tryAcquire();
    }

    漏桶算法

    漏桶作为计量工具(The Leaky Bucket Algorithm as a Meter)时,可以用于流量整形(Traffic Shaping)和流量控制(TrafficPolicing),漏桶算法的描述如下:

    • 一个固定容量的漏桶,按照常量固定速率流出水滴;
    • 如果桶是空的,则不需流出水滴;
    • 可以以任意速率流入水滴到漏桶;
    • 如果流入水滴超出了桶的容量,则流入的水滴溢出了(被丢弃),而漏桶容量是不变的。

    令牌桶和漏桶对比:

    • 令牌桶是按照固定速率往桶中添加令牌,请求是否被处理需要看桶中令牌是否足够,当令牌数减为零时则拒绝新的请求;
    • 漏桶则是按照常量固定速率流出请求,流入请求速率任意,当流入的请求数累积到漏桶容量时,则新流入的请求被拒绝;
    • 令牌桶限制的是平均流入速率(允许突发请求,只要有令牌就可以处理,支持一次拿3个令牌,4个令牌),并允许一定程度突发流量;
    • 漏桶限制的是常量流出速率(即流出速率是一个固定常量值,比如都是1的速率流出,而不能一次是1,下次又是2),从而平滑突发流入速率;
    • 令牌桶允许一定程度的突发,而漏桶主要目的是平滑流入速率;
    • 两个算法实现可以一样,但是方向是相反的,对于相同的参数得到的限流效果是一样的。



  • 相关阅读:
    [Form Builder]POST 与 commit_form 的区别
    [Form Builder]Form中的validate验证事件
    [Form Builder]Oracle Form系统变量中文版总结大全
    [Form Builder]NAME_IN()与COPY()
    [Form Builder]APP_ITEM_PROPERTY.SET_PROPERTY 用法
    解决MVC模式文件下载附件中文名称乱码
    [ASP.NET MVC]笔记(四) UnobtruSive AJAX和客户端验证
    log4net的使用
    Linq 实现sql中的not in和in条件查询
    [ASP.NET MVC]笔记(三) 成员资格、授权和安全性
  • 原文地址:https://www.cnblogs.com/wang-meng/p/b7a4ab721dcf0cfcb620eed21c6388a5.html
Copyright © 2020-2023  润新知