题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667
思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式。具体的拆边方法为:第i次取这条路时费用为(2*i-1)*a (i<=5),每条边的容量为1。如果这条边通过的流量为x,那正好sigma(2*i-1)(1<<i<<x)==x^2。然后就是跑最小费用最大流了。
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<queue> 6 using namespace std; 7 #define MAXN 222 8 #define MAXM 22222222 9 #define inf 1<<30 10 11 struct Edge{ 12 int v,cap,cost,next; 13 }edge[MAXM]; 14 15 int n,m,k,NE; 16 int head[MAXN]; 17 18 void Insert(int u,int v,int cap,int cost) 19 { 20 edge[NE].v=v; 21 edge[NE].cap=cap; 22 edge[NE].cost=cost; 23 edge[NE].next=head[u]; 24 head[u]=NE++; 25 26 edge[NE].v=u; 27 edge[NE].cap=0; 28 edge[NE].cost=-cost; 29 edge[NE].next=head[v]; 30 head[v]=NE++; 31 } 32 33 int dist[MAXN]; 34 bool mark[MAXN]; 35 int cur[MAXN],pre[MAXN]; 36 bool spfa(int vs,int vt) 37 { 38 memset(mark,false,sizeof(mark)); 39 fill(dist,dist+n+1,inf); 40 dist[vs]=0; 41 queue<int>que; 42 que.push(vs); 43 while(!que.empty()){ 44 int u=que.front(); 45 que.pop(); 46 mark[u]=false; 47 for(int i=head[u];i!=-1;i=edge[i].next){ 48 int v=edge[i].v,cost=edge[i].cost; 49 if(edge[i].cap>0&&dist[u]+cost<dist[v]){ 50 dist[v]=dist[u]+cost; 51 pre[v]=u; 52 cur[v]=i; 53 if(!mark[v]){ 54 mark[v]=true; 55 que.push(v); 56 } 57 } 58 } 59 } 60 return dist[vt]<inf; 61 } 62 63 int MinCostFlow(int vs,int vt) 64 { 65 int cost=0,flow=0; 66 while(spfa(vs,vt)){ 67 int aug=inf; 68 for(int u=vt;u!=vs;u=pre[u]){ 69 aug=min(aug,edge[cur[u]].cap); 70 } 71 flow+=aug;cost+=dist[vt]*aug; 72 for(int u=vt;u!=vs;u=pre[u]){ 73 edge[cur[u]].cap-=aug; 74 edge[cur[u]^1].cap+=aug; 75 } 76 } 77 if(flow<k)cost=-1; 78 return cost; 79 } 80 81 int main() 82 { 83 int u,v,cost,cap; 84 while(~scanf("%d%d%d",&n,&m,&k)){ 85 NE=0; 86 memset(head,-1,sizeof(head)); 87 while(m--){ 88 scanf("%d%d%d%d",&u,&v,&cost,&cap); 89 for(int i=1;i<=cap;i++){ 90 Insert(u,v,1,(2*i-1)*cost); 91 } 92 } 93 Insert(0,1,k,0); 94 printf("%d ",MinCostFlow(0,n)); 95 } 96 return 0; 97 } 98 99 100 101