关于光流法请看我之前的博客Lukas-Kanade光流法。这里介绍Horn-Schunck光流法。
Horn-Schunck光流法求得的是稠密光流,需要对每一个像素计算光流值,计算量比较大。而Lucas-Kanade光流法只需计算若干点的光流,是一种稀疏光流。
数学原理这里就不介绍了,直接说算法步骤。
用uij与vij分别表示图像像素点(i,j)处的水平方向光流值与垂直方向光流值,每次迭代后的更新方程为
n为迭代次数,lamda反映了对图像数据及平滑约束的可信度,当图像数据本身含有较大噪声时,此时需要加大lamda的值,相反,当输入图像含有较少的噪声时,此时可减小lamda的值。
代表u邻域与v邻域的平均值,一般采用相应4邻域内的均值
也可以采用3*3、5*5的窗口用模板平滑,窗口不宜过大,过大会破坏光流假设。
Ix、Iy分别是图像对x、y的偏导数。It是两帧图像间对时间的导数。
当然你也可以考虑相邻像素及相邻两帧图像的影响,Horn-Schunck 提出通过 4 次有限差分来得到
这里只考虑了前后两帧图像。考虑连续三帧图像的话有如下方法:
一种性能更优的 3D-Sobel 算子 如下图所示。该算子在x 、y 、t方向上分别使用不同的模板对连续3帧图像进行卷积计算 得出中间帧的位于模板中心的像素在三个方向上的梯度 。
迭代一定次数后u、v收敛,光流计算停止。在实际的计算中迭代初值可取U(0) =0、V(0)=0。
算法改进
对于一般场景基本等式只有在图像中灰度梯度值较大的点处才成立。因此为了增强算法的稳定性和准确性 我们仅在梯度较大的点处才使用亮度恒常性约束,而在梯度较小的点处只使用流场一致性约束。定义如下权函数
下面是我的实现,使用了图像金字塔,关于图像金字塔,请看Lukas-Kanade光流法。(写代码时传错一个参数,调了几个小时)
#ifndef __HORNSCHUNCK__ #define __HORNSCHUNCK__ class HornSchunckTracker { private: unsigned int max_pyramid_layer; unsigned int original_imgH; unsigned int original_imgW; BYTE**pre_pyr;//the pyramid of previous frame image,img1_pyr[0] is of max size BYTE**next_pyr;//the frame after img1_pyr int*height; int*width; double*optical_field_U; double*optical_field_V; bool isusepyramid; double lamda;//取20 const double precision = 1; const int maxiteration=300; double threshold;//最小的光流阈值 double scale_factor;//缩放因子 private: void get_max_pyramid_layer(); void pyramid_down(BYTE*&src_gray_data, const int src_h, const int src_w, BYTE*& dst, int&dst_h, int&dst_w); void pyramid_up(double*src,int srcW,int srcH,double*dst,int dstW,int dstH); void lowpass_filter(double*&src, const int H, const int W, double*&smoothed); void get_fx_fy_ft(BYTE*img1, BYTE*img2, int w, int h, double*fx, double*fy, double*ft); void build_pyramid(BYTE**&original_gray); double get_average4(double*src, const int height, const int width, const int i, const int j); void bilinear(double* lpSrc, double* lpDst, int nW, int nH, int H1, int W1); void bilinear(BYTE* lpSrc, BYTE* lpDst, int nW, int nH, int H1, int W1); public: HornSchunckTracker(); ~HornSchunckTracker(); void get_pre_frame(BYTE*&gray);//use only at the beginning void discard_pre_frame(); //set the next frame as pre_frame,must dicard pre_pyr in advance void get_pre_frame(); //use every time,must after using get_pre_frame(BYTE**pyr) void get_next_frame(BYTE*&gray); void get_info(const int nh, const int nw); void set_paras(double lamda,double threshold,double scalefactor); void run_single_frame(); void HornSchunck(); void get_optical_flow(double*&u, double*&v); }; #endif
#include "stdafx.h" #include "HornSchunckTracker.h" HornSchunckTracker::HornSchunckTracker() { isusepyramid = true; } HornSchunckTracker::~HornSchunckTracker() { for (int i = 0; i < max_pyramid_layer; i++) { if (pre_pyr[i]) delete[]pre_pyr[i]; if (next_pyr[i]) delete[]next_pyr[i]; } delete[]pre_pyr; delete[]next_pyr; if (height) delete[]height; if (width) delete[]width; } void HornSchunckTracker::get_max_pyramid_layer() { double minsize = 80; double temp = original_imgH > original_imgW ? original_imgW : original_imgH; double tt = log(temp / minsize) / log(scale_factor); if (tt>4) { max_pyramid_layer = 5; return; } max_pyramid_layer = tt; } void HornSchunckTracker::build_pyramid(BYTE**&pyramid) { for (int i = 1; i < max_pyramid_layer; i++) { pyramid_down(pyramid[i - 1], height[i - 1], width[i - 1], pyramid[i], height[i], width[i]); } } void HornSchunckTracker::pyramid_down(BYTE*&src_gray_data, const int src_h, const int src_w, BYTE*& dst, int&dst_h, int&dst_w) { dst_h = src_h / scale_factor; dst_w = src_w / scale_factor; assert(dst_w > 3 && dst_h > 3); //BYTE*smoothed = new BYTE[src_h*src_w]; dst = new BYTE[dst_h*dst_w]; //lowpass_filter(src_gray_data, src_h, src_w,smoothed); bilinear(src_gray_data, dst, src_w, src_h, dst_h, dst_w); /*for (int i = 0; i < dst_h - 1; i++) for (int j = 0; j < dst_w - 1; j++) { int srcY = 2 * i + 1; int srcX = 2 * j + 1; double re = src_gray_data[srcY*src_w + srcX] * 0.25; re += src_gray_data[(srcY - 1)*src_w + srcX] * 0.125; re += src_gray_data[(srcY + 1)*src_w + srcX] * 0.125; re += src_gray_data[srcY*src_w + srcX - 1] * 0.125; re += src_gray_data[srcY*src_w + srcX + 1] * 0.125; re += src_gray_data[(srcY - 1)*src_w + srcX + 1] * 0.0625; re += src_gray_data[(srcY - 1)*src_w + srcX - 1] * 0.0625; re += src_gray_data[(srcY + 1)*src_w + srcX - 1] * 0.0625; re += src_gray_data[(srcY + 1)*src_w + srcX + 1] * 0.0625; dst[i*dst_w + j] = re; } for (int i = 0; i < dst_h; i++) dst[i*dst_w + dst_w - 1] = dst[i*dst_w + dst_w - 2]; for (int i = 0; i < dst_w; i++) dst[(dst_h - 1)*dst_w + i] = dst[(dst_h - 2)*dst_w + i];*/ } void HornSchunckTracker::get_pre_frame(BYTE*&gray)//use only at the beginning { pre_pyr[0] = gray; build_pyramid(pre_pyr); //save_gray("1.bmp", pre_pyr[1], height[1], width[1]); } void HornSchunckTracker::discard_pre_frame() { for (int i = 0; i < max_pyramid_layer; i++) delete[]pre_pyr[i]; } //set the next frame as pre_frame,must dicard pre_pyr in advance void HornSchunckTracker::get_pre_frame() { for (int i = 0; i < max_pyramid_layer; i++) pre_pyr[i] = next_pyr[i]; } //use every time,must after using get_pre_frame(BYTE**pyr) void HornSchunckTracker::get_next_frame(BYTE*&gray) { next_pyr[0] = gray; build_pyramid(next_pyr); //save_gray("1.bmp", next_pyr[1], height[1], width[1]); } void HornSchunckTracker::get_info(const int nh, const int nw) { original_imgH = nh; original_imgW = nw; if (isusepyramid) get_max_pyramid_layer(); else max_pyramid_layer = 1; pre_pyr = new BYTE*[max_pyramid_layer]; next_pyr = new BYTE*[max_pyramid_layer]; height = new int[max_pyramid_layer]; width = new int[max_pyramid_layer]; height[0] = nh; width[0] = nw; } //低通滤波 void HornSchunckTracker::lowpass_filter(double*&src, const int H, const int W, double*&smoothed) { //tackle with border for (int i = 0; i < H; i++) { smoothed[i*W] = src[i*W]; smoothed[i*W + W - 1] = src[i*W + W - 1]; } for (int i = 0; i < W; i++) { smoothed[i] = src[i]; smoothed[(H - 1)*W + i] = src[(H - 1)*W + i]; } for (int i = 1; i < H - 1; i++) for (int j = 1; j < W - 1; j++) { double re = 0; re += src[i*W + j] * 0.25; re += src[(i - 1)*W + j] * 0.125; re += src[i*W + j + 1] * 0.125; re += src[i*W + j - 1] * 0.125; re += src[(i + 1)*W + j] * 0.125; re += src[(i - 1)*W + j - 1] * 0.0625; re += src[(i + 1)*W + j - 1] * 0.0625; re += src[(i - 1)*W + j + 1] * 0.0625; re += src[(i + 1)*W + j + 1] * 0.0625; smoothed[i*W + j] = re; } } void HornSchunckTracker::get_fx_fy_ft(BYTE*img1, BYTE*img2, int w, int h, double*fx, double*fy, double*ft) { for (int i = 0; i < h - 1; i++) for (int j = 0; j < w - 1; j++) { fx[i*w + j] = 0.25*(img1[i*w + j + 1] - img1[i*w + j] + img1[(i + 1)*w + j + 1] - img1[(i + 1)*w + j] + img2[i*w + j + 1] - img2[i*w + j] + img2[(i + 1)*w + j + 1] - img2[(i + 1)*w + j]); fy[i*w + j] = 0.25 * (img1[(i + 1)*w + j] - img1[i*w + j] +img1[(i + 1)*w + j + 1] - img1[i*w + j + 1] + img2[(i + 1)*w + j] - img2[i*w + j] + img2[(i + 1)*w + j + 1] - img2[i*w + j + 1]); ft[i*w + j] = 0.25 * (img2[i*w + j] - img1[i*w + j] +img2[(i + 1)*w + j] - img1[(i + 1)*w + j] + img2[(i + 1)*w + j + 1] - img1[(i + 1)*w + j + 1] + img2[i*w + j + 1] - img1[i*w + j + 1]); } for (int i = 0; i < h; i++) { //fx[i*w] = fx[i*w + w - 2]; fx[i*w + w - 1] = fx[i*w + w - 2]; //fy[i*w] = fy[i*w + w - 2]; fy[i*w + w - 1] = fy[i*w + w - 2]; //ft[i*w] = ft[i*w + w - 2]; ft[i*w + w - 1] = ft[i*w + w - 2]; } for (int j = 0; j < w; j++) { //fx[j] = fx[h + j]; fx[(h - 1)*w + j] = fx[(h - 2)*w + j]; //fy[j] = fy[h + j]; fy[(h - 1)*w + j] = fy[(h - 2)*w + j]; //ft[j] = ft[h + j]; ft[(h - 1)*w + j] = ft[(h - 2)*w + j]; } } //取得计算得到的光流值,u、v为out型参数 void HornSchunckTracker::get_optical_flow(double*&u, double*&v) { assert(optical_field_U&&optical_field_V); u = optical_field_U; v = optical_field_V; } //int save_gray(char * savebmp_file, LPBYTE gray, int height, int width); //返回求得的光流场,大小为原始图像大小 void HornSchunckTracker::HornSchunck() { //save_gray("22.bmp", pre_pyr[0], height[0], width[0]); //初始化光流场为0 if (optical_field_U) delete[]optical_field_U; if (optical_field_V) delete[]optical_field_V; optical_field_U = new double[width[max_pyramid_layer - 1] * height[max_pyramid_layer - 1]]; optical_field_V = new double[width[max_pyramid_layer - 1] * height[max_pyramid_layer - 1]]; memset(optical_field_U, 0, sizeof(double)*width[max_pyramid_layer - 1] * height[max_pyramid_layer - 1]); memset(optical_field_V, 0, sizeof(double)*width[max_pyramid_layer - 1] * height[max_pyramid_layer - 1]); //使用金字塔计算光流 for (int i = max_pyramid_layer - 1; i >= 0; i--) { double*Ix = new double[width[i] * height[i]]; double*Iy = new double[width[i] * height[i]]; double*It = new double[width[i] * height[i]]; //求偏导 get_fx_fy_ft(pre_pyr[i], next_pyr[i], width[i], height[i], Ix, Iy, It); //将光流场平滑 double*smoothed_U = new double[width[i] * height[i]]; double*smoothed_V = new double[width[i] * height[i]]; if (i == max_pyramid_layer - 1) { memset(smoothed_U, 0, sizeof(double)*width[i] * height[i]); memset(smoothed_V, 0, sizeof(double)*width[i] * height[i]); } else { lowpass_filter(optical_field_U, height[i], width[i], smoothed_U); lowpass_filter(optical_field_V, height[i], width[i], smoothed_V); } double error = 1000000; int iteration = 0; //迭代计算每个像素的光流,直到收敛或达到最大迭代次数 while (error > precision&&iteration < maxiteration) { iteration++; error = 0; //计算该层金字塔的光流 for (int j = 0; j < height[i]; j++) for (int k = 0; k < width[i]; k++) { //采用改进方法,光流速度需大于阈值,这样不仅准确度增加,计算量也会减小 double w = Ix[j*width[i] + k] * Ix[j*width[i] + k] + Iy[j*width[i] + k] * Iy[j*width[i] + k] > threshold ? 1 : 0; double u_pre = optical_field_U[j*width[i] + k]; double v_pre = optical_field_V[j*width[i] + k]; double utemp = smoothed_U[j*width[i] + k];//get_average4(optical_field_U, height[i], width[i], j, k); double vtemp = smoothed_V[j*width[i] + k]; //get_average4(optical_field_V, height[i], width[i], j, k); double denominator = lamda + w*(Ix[j*width[i] + k] * Ix[j*width[i] + k] + Iy[j*width[i] + k] * Iy[j*width[i] + k]); double numerator = Ix[j*width[i] + k] * utemp + Iy[j*width[i] + k] * vtemp + It[j*width[i] + k]; optical_field_U[j*width[i] + k] = utemp - Ix[j*width[i] + k] *w*numerator / denominator; optical_field_V[j*width[i] + k] = vtemp - Iy[j*width[i] + k] *w*numerator / denominator; error += pow(optical_field_U[j*width[i] + k] - u_pre,2) + pow(optical_field_V[j*width[i] + k] - v_pre,2); } //下一次迭代前重新平滑光流场 if (error >exp(double(max_pyramid_layer-i))*precision&&iteration < maxiteration) { lowpass_filter(optical_field_U, height[i], width[i], smoothed_U); lowpass_filter(optical_field_V, height[i], width[i], smoothed_V); } } delete[]smoothed_U, smoothed_V,Ix,Iy,It; if (i == 0)//得到最终光流场 { return; } //下一层的光流场 double*new_of_u = new double[width[i - 1] * height[i - 1]]; double*new_of_v = new double[width[i - 1] * height[i - 1]]; //上采样 pyramid_up(optical_field_U, width[i], height[i], new_of_u, width[i - 1], height[i - 1]); pyramid_up(optical_field_V, width[i], height[i], new_of_v, width[i - 1], height[i - 1]); //将每个像素的光流按缩放因子放大,得到下一层的光流场的初值 //double scale = double(height[i - 1]) / height[i]; for (int j = 0; j < height[i - 1]; j++) for (int k = 0; k < width[i - 1]; k++) { new_of_u[j*width[i - 1] + k] *= scale_factor; new_of_v[j*width[i - 1] + k] *= scale_factor; } delete[]optical_field_U, optical_field_V; optical_field_U = new_of_u; optical_field_V = new_of_v; } } //上采样,采用双线性插值,用双立方插值应该更精确 void HornSchunckTracker::pyramid_up(double*src, int srcW, int srcH, double*dst, int dstW, int dstH) { bilinear(src, dst, srcW, srcH, dstH, dstW); } //双线性插值 void HornSchunckTracker::bilinear(double* lpSrc, double* lpDst, int nW, int nH, int H1, int W1) { float fw = float(nW) / W1; float fh = float(nH) / H1; int y1, y2, x1, x2, x0, y0; float fx1, fx2, fy1, fy2; for (int i = 0; i < H1; i++) { y0 = i*fh; y1 = int(y0); if (y1 == nH - 1) y2 = y1; else y2 = y1 + 1; fy1 = y1 - y0; fy2 = 1.0f - fy1; for (int j = 0; j < W1; j++) { x0 = j*fw; x1 = int(x0); if (x1 == nW - 1) x2 = x1; else x2 = x1 + 1; fx1 = y1 - y0; fx2 = 1.0f - fx1; float s1 = fx1*fy1; float s2 = fx2*fy1; float s3 = fx2*fy2; float s4 = fx1*fy2; double c1, c2, c3, c4; c1 = lpSrc[y1*nW + x1]; c2 = lpSrc[y1*nW + x2]; c3 = lpSrc[y2*nW + x1]; c4 = lpSrc[y2*nW + x2]; double r; r = (c1*s3) + (c2*s4) + (c3*s2) + (c4*s1); lpDst[i*W1 + j] = r; } } } //双线性插值 void HornSchunckTracker::bilinear(BYTE* lpSrc, BYTE* lpDst, int nW, int nH, int H1, int W1) { float fw = float(nW) / W1; float fh = float(nH) / H1; int y1, y2, x1, x2, x0, y0; float fx1, fx2, fy1, fy2; for (int i = 0; i < H1; i++) { y0 = i*fh; y1 = int(y0); if (y1 == nH - 1) y2 = y1; else y2 = y1 + 1; fy1 = y1 - y0; fy2 = 1.0f - fy1; for (int j = 0; j < W1; j++) { x0 = j*fw; x1 = int(x0); if (x1 == nW - 1) x2 = x1; else x2 = x1 + 1; fx1 = y1 - y0; fx2 = 1.0f - fx1; float s1 = fx1*fy1; float s2 = fx2*fy1; float s3 = fx2*fy2; float s4 = fx1*fy2; double c1, c2, c3, c4; c1 = lpSrc[y1*nW + x1]; c2 = lpSrc[y1*nW + x2]; c3 = lpSrc[y2*nW + x1]; c4 = lpSrc[y2*nW + x2]; double r; r = (c1*s3) + (c2*s4) + (c3*s2) + (c4*s1); lpDst[i*W1 + j] = BYTE(r); } } } void HornSchunckTracker::set_paras(double lamda, double threshold, double scalefactor) { this->lamda = lamda; this->threshold = threshold; scale_factor = scalefactor; } //double HornSchunckTracker::get_average4(double*src, const int height, const int width, const int i, const int j) //{ // if (j < 0 || j >= width) return 0; // if (i < 0 || i >= height) return 0; // // double val = 0.0; // int tmp = 0; // if ((i - 1) >= 0){ // ++tmp; // val += src[(i - 1)*width + j]; // } // if (i + 1<height){ // ++tmp; // val += src[(i + 1)*width + j]; // } // if (j - 1 >= 0){ // ++tmp; // val += src[i*width + j - 1]; // } // if (j + 1<width){ // ++tmp; // val += src[i*width + j + 1]; // } // return val / tmp; // //}
可以看出对边缘的光流检测较好,内部点的光流检测较难。
版权声明: