• 数据结构:图(基础)


    一、基本概念

    # 图:是一种数学模型,表示信息之间的联系;

    # 图的作用:通过可视化的图,可以比较容易的得出不同的结论;

    # 图的模型的表示,主要是数据可视化要做的事;

    # 算法中的图,主要由点和边组成的数学模型,表示真实样本的关系;

      # 节点(Vertex)

      # 边(Edge)

    # 例1:快递网络,每个点是一个分拨中心,每各边表示分拨中心之间的距离;

    # 例2:社交网络,每个点表示一个人,每个边表示人与人之间的关系;

    # 例3:程序的状态执行,每个点表示程序的一个状态,每个边表示程序可以从一种状态执行到另一种状态;

    # 分类:

    # 方式(一):

    # 1)无向图(UNdirected Graph):边不表示方向;

      # 也可以将无向图看做是一种特殊的有向图,如下图:

    # 2)有向图(Directed Graph):边有方向;

      # 有向图中的点与点之间不对称,有时会出现一些更加复杂的问题,进而产生出一些专门的算法,一般有向图会涉及到比较难的算法;

    # 很多时候是在研究有向图和无向图都通用的算法;

    方式(二):

    # 1)无权图(Unweighted Graph):

    # 2)有权图(Weighted Graph):

    # 权,可以理解为一个数值;

    # 分类的方式是,有没有数值与连接节点与节点之间的边相对应;

    # 例1(无权图):社交网络,点表示人,表可以表示认识 / 不认识这两种状态,并不是一个值;

    # 例2(有权图):快递网络,点表分拨中心,边表示分拨中心之间的距离,是一直具体是数值;

    # 图的连通性:

    # 实际中,有的图不是完全连通的,分成不同的块,共同组成了各种关联;

    # 简单图(Simple Graph):没有自环边和平行边的图;

    # 有时候,平行边和自环边会加大算法的难度;

    二、图的表示

    # 图的核心就是节点和连接节点的边;

    # 一般表示方式的不同体现是对边的表示,应该用哪种数据结构;

    # 方式(一):邻接矩阵(Adjacency Matrix)

    # 使用一个 n X n 的二维矩阵表示一张图:n 就是图的节点数;

    # 无向图的邻接矩阵关于对角线对称;

    # 例:

    # 一)无向图的表示法:

    1. X 矩阵中的第 Xij 个数据,表示第 i 个点与第 j 个点的关系;
    2. 0,表示两点不相连;1,表示两点相连;

    # 二)有向图的表示法

    # 方式(二):邻接表(Adjacency Lists)

    # 对应每一行数据,只表示与该行表示的点相连的点的信息;

    # 1)无向图

    1. 每一行表示一个点;
    2. 每一行的数据,表示与该点相连的点的名称;

    # 每一行相当于一个链表,存放了对于该行而言,与该行表示的点邻的所有的点;

    # 2)有向图

    # 邻接矩阵与邻接表对比:

    • 邻接表适合表示稀疏图(Sparse Graph),邻接矩阵适合表示稠密图(Dense Graph);
    • 稀疏图使用邻接表存储,效率更高;
    1. 稀疏图:边相对较少的图;(边与点的数量比较小)
    2. 稠密图:边相对较多的图;(边与点的数量比较大)
    3. 如果有 k 个点,理论上,每一个点最多都能与其它 k-1 个点相连(完全图),则最多有 k*(k - 1) / 2 条边,边与点的最大比:(k - 1) / 2;
    • 邻接表所占存储空间小;

    # 完全图:每个点都与其它所有的点相连;

    # 代码实现邻接表和邻接矩阵:

  • 相关阅读:
    dpkg install command
    Notes: GitHub, CA errors and old curl's
    幫倒忙的IE8 JSON.stringify()
    Connect High quality middleware for node.js
    MVC3, jQuery and JSON.stringify
    Scraping the Dynamic Web with PhantomJS: Using jQuery and Node: James Morrin: 9781449321864: Amazon.com: Books
    FAQ’S Ultimate Web Scraping
    How Yottaa Brings Site Speed,
    Node入门 » 一本全面的Node.js教程
    用Meteor框架快速搭建高质量互联网应用
  • 原文地址:https://www.cnblogs.com/volcao/p/9491449.html
Copyright © 2020-2023  润新知