• Python实现决策树C4.5算法


     为什么要改进成C4.5算法

    • 原理

      C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益。

      之所以这样做是因为信息增益倾向于选择取值比较多的特征(特征越多,条件熵(特征划分后类别变量的熵)越小,信息增益就越大);因此在信息增益下面加一个分母,该分母是当前所选特征的熵,注意:这里而不是类别变量的熵了。

      这样就构成了新的特征选择准则,叫做信息增益比。为什么加了这样一个分母就会消除ID3算法倾向于选择取值较多的特征呢?

      因为特征取值越多,该特征的熵就越大,分母也就越大,所以信息增益比就会减小,而不是像信息增益那样增大了,一定程度消除了算法对特征取值范围的影响。

    • 实现

      在算法实现上,C4.5算法只是修改了信息增益计算的函数calcShannonEntOfFeature和最优特征选择函数chooseBestFeatureToSplit。

      calcShannonEntOfFeature在ID3的calcShannonEnt函数上加了个参数feat,ID3中该函数只用计算类别变量的熵,而calcShannonEntOfFeature可以计算指定特征或者类别变量的熵

      chooseBestFeatureToSplit函数在计算好信息增益后,同时计算了当前特征的熵IV,然后相除得到信息增益比,以最大信息增益比作为最优特征。

      在划分数据的时候,有可能出现特征取同一个值,那么该特征的熵为0,同时信息增益也为0(类别变量划分前后一样,因为特征只有一个取值),0/0没有意义,可以跳过该特征。

    #coding=utf-8
    import operator
    from math import log
    import time
    import os, sys
    import string
    
    def createDataSet(trainDataFile):
        print trainDataFile
        dataSet = []
        try:
            fin = open(trainDataFile)
            for line in fin:
                line = line.strip()
                cols = line.split('	')
                row = [cols[1], cols[2], cols[3], cols[4], cols[5], cols[6], cols[7], cols[8], cols[9], cols[10], cols[0]]
                dataSet.append(row)
                #print row
        except:
            print 'Usage xxx.py trainDataFilePath'
            sys.exit()
            labels = ['cip1', 'cip2', 'cip3', 'cip4', 'sip1', 'sip2', 'sip3', 'sip4', 'sport', 'domain']
        print 'dataSetlen', len(dataSet)
            return dataSet, labels
    
    #calc shannon entropy of label or feature
    def calcShannonEntOfFeature(dataSet, feat):
        numEntries = len(dataSet)
        labelCounts = {}
        for feaVec in dataSet:
            currentLabel = feaVec[feat]
            if currentLabel not in labelCounts:
                labelCounts[currentLabel] = 0
            labelCounts[currentLabel] += 1
        shannonEnt = 0.0
        for key in labelCounts:
            prob = float(labelCounts[key])/numEntries
            shannonEnt -= prob * log(prob, 2)
        return shannonEnt
    
    def splitDataSet(dataSet, axis, value):
        retDataSet = []
        for featVec in dataSet:
            if featVec[axis] == value:
                reducedFeatVec = featVec[:axis]
                reducedFeatVec.extend(featVec[axis+1:])
                retDataSet.append(reducedFeatVec)
        return retDataSet
        
    def chooseBestFeatureToSplit(dataSet):
        numFeatures = len(dataSet[0]) - 1    #last col is label
        baseEntropy = calcShannonEntOfFeature(dataSet, -1)
        bestInfoGainRate = 0.0
        bestFeature = -1
        for i in range(numFeatures):
            featList = [example[i] for example in dataSet]
            uniqueVals = set(featList)
            newEntropy = 0.0
            for value in uniqueVals:
                subDataSet = splitDataSet(dataSet, i, value)
                prob = len(subDataSet) / float(len(dataSet))
                newEntropy += prob *calcShannonEntOfFeature(subDataSet, -1)    #calc conditional entropy
            infoGain = baseEntropy - newEntropy
           iv = calcShannonEntOfFeature(dataSet, i)
            if(iv == 0):    #value of the feature is all same,infoGain and iv all equal 0, skip the feature
            continue
           infoGainRate = infoGain / iv
            if infoGainRate > bestInfoGainRate:
                bestInfoGainRate = infoGainRate
                bestFeature = i
        return bestFeature
                
    #feature is exhaustive, reture what you want label
    def majorityCnt(classList):
        classCount = {}
        for vote in classList:
            if vote not in classCount.keys():
                classCount[vote] = 0
            classCount[vote] += 1
        return max(classCount)         
        
    def createTree(dataSet, labels):
        classList = [example[-1] for example in dataSet]
        if classList.count(classList[0]) ==len(classList):    #all data is the same label
            return classList[0]
        if len(dataSet[0]) == 1:    #all feature is exhaustive
            return majorityCnt(classList)
        bestFeat = chooseBestFeatureToSplit(dataSet)
        bestFeatLabel = labels[bestFeat]
        if(bestFeat == -1):        #特征一样,但类别不一样,即类别与特征不相关,随机选第一个类别做分类结果
        return classList[0] 
        myTree = {bestFeatLabel:{}}
        del(labels[bestFeat])
        featValues = [example[bestFeat] for example in dataSet]
        uniqueVals = set(featValues)
        for value in uniqueVals:
            subLabels = labels[:]
            myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
        return myTree
        
    def main():
        if(len(sys.argv) < 3):
        print 'Usage xxx.py trainSet outputTreeFile'
        sys.exit()
        data,label = createDataSet(sys.argv[1])
        t1 = time.clock()
        myTree = createTree(data,label)
        t2 = time.clock()
        fout = open(sys.argv[2], 'w')
        fout.write(str(myTree))
        fout.close()
        print 'execute for ',t2-t1
    if __name__=='__main__':
        main()
  • 相关阅读:
    构造函数和析构函数
    关联[2]
    关联模型[1]
    auth 权限控制
    多语言设置
    文件上传
    验证码
    图像处理
    Session 与 Cookie
    控制器[3]
  • 原文地址:https://www.cnblogs.com/vincent-vg/p/6745275.html
Copyright © 2020-2023  润新知