• Fzreo matlab


    fzero

    Root of nonlinear function

    Syntax

    • [x,fval,exitflag,output]= fzero(___) example

    Description

    example

    x = fzero(fun,x0) triesto find a point x where fun(x) = 0. This solution is where fun(x) changessign—fzero cannot find a root of a functionsuch as x^2.

    example

    x = fzero(fun,x0,options) uses options tomodify the solution process.

    example

    x = fzero(problem) solvesa root-finding problem specified by problem.

    example

    [x,fval,exitflag,output]= fzero(___) returns fun(x) inthe fval output, exitflag encodingthe reason fzero stopped, and an output structurecontaining information on the solution process.

    Examples

    collapse all

    Root Starting From One Point

    Calculate $pi$ by finding the zero of the sine function near 3.

    fun = @sin; % function
    x0 = 3; % initial point
    x = fzero(fun,x0)
    
    x =
    
        3.1416
    
    

    Root Starting From an Interval

    Find the zero of cosine between 1 and 2.

    fun = @cos; % function
    x0 = [1 2]; % initial interval
    x = fzero(fun,x0)
    
    x =
    
        1.5708
    
    

    Note that $cos(1)$ and $cos(2)$ differ in sign.

    Root of a Function Defined by a File

    Find a zero of the function f(x) = x3 – 2x – 5.

    First, write a file called f.m.

    function y = f(x)
    y = x.^3 - 2*x - 5;

    Save f.m on your MATLAB® path.

    Find the zero of f(x)near 2.

    fun = @f; % function
    x0 = 2; % initial point
    z = fzero(fun,x0)
    z =
        2.0946

    Since f(x) is a polynomial, you canfind the same real zero, and a complex conjugate pair of zeros, usingthe roots command.

    roots([1 0 -2 -5])
       ans =
       2.0946          
      -1.0473 + 1.1359i
      -1.0473 - 1.1359i

    Root of Function with Extra Parameter

    Find the root of a function that has an extra parameter.

    myfun = @(x,c) cos(c*x);  % parameterized function
    c = 2;                    % parameter
    fun = @(x) myfun(x,c);    % function of x alone
    x = fzero(fun,0.1)
    
    x =
    
        0.7854
    
    

    Nondefault Options

    Plot the solution process by setting some plot functions.

    Define the function and initial point.

    fun = @(x)sin(cosh(x));
    x0 = 1;
    

    Examine the solution process by setting options that include plot functions.

    options = optimset('PlotFcns',{@optimplotx,@optimplotfval});
    

    Run fzero including options.

    x = fzero(fun,x0,options)
    
    x =
    
        1.8115
    
    

    Solve Problem Structure

    Solve a problem that is defined by a problem structure.

    Define a structure that encodes a root-finding problem.

    problem.objective = @(x)sin(cosh(x));
    problem.x0 = 1;
    problem.solver = 'fzero'; % a required part of the structure
    problem.options = optimset(@fzero); % default options
    

    Solve the problem.

    x = fzero(problem)
    
    x =
    
        1.8115
    
    

    More Information from Solution

    Find the point where exp(-exp(-x)) = x, and display information about the solution process.

    fun = @(x) exp(-exp(-x)) - x; % function
    x0 = [0 1]; % initial interval
    options = optimset('Display','iter'); % show iterations
    [x fval exitflag output] = fzero(fun,x0,options)
    
     
     Func-count    x          f(x)             Procedure
        2               1     -0.307799        initial
        3        0.544459     0.0153522        interpolation
        4        0.566101    0.00070708        interpolation
        5        0.567143  -1.40255e-08        interpolation
        6        0.567143   1.50013e-12        interpolation
        7        0.567143             0        interpolation
     
    Zero found in the interval [0, 1]
    
    x =
    
        0.5671
    
    
    fval =
    
         0
    
    
    exitflag =
    
         1
    
    
    output = 
    
        intervaliterations: 0
                iterations: 5
                 funcCount: 7
                 algorithm: 'bisection, interpolation'
                   message: 'Zero found in the interval [0, 1]'
    
    

    fval = 0 means fun(x) = 0, as desired.

    Related Examples

    Input Arguments

    collapse all

    fun — Function to solvefunction handle

    Function to solve, specified as a handle to a scalar-valuedfunction. fun accepts a scalar x andreturns a scalar fun(x).

    fzero solves fun(x) = 0. To solve an equation fun(x) = c(x),instead solve fun2(x) = fun(x) - c(x) = 0.

    To include extra parameters in your function, see the example Root of Function with Extra Parameter andthe section Parameterizing Functions.

    Example: @sin

    Example: @myFunction

    Example: @(x)(x-a)^5 - 3*x + a - 1

    Data Types: function_handle

    x0 — Initial valuescalar | 2-element vector

    Initial value, specified as a real scalar or a 2-element realvector.

    • Scalar — fzero begins at x0 andtries to locate a point x1 where fun(x1) hasthe opposite sign of fun(x0). Then fzero iterativelyshrinks the interval where fun changes sign toreach a solution.

    • 2-element vector — fzero checksthat fun(x0(1)) and fun(x0(2)) haveopposite signs, and errors if they do not. It then iteratively shrinksthe interval where fun changes sign to reach asolution. An interval x0 must be finite; it cannotcontain ±Inf.

    Tip  Calling fzero with an interval (x0 withtwo elements) is often faster than calling it with a scalar x0.

    Example: 3

    Example: [2,17]

    Data Types: double

    options — Options for solution processstructure, typically created using optimset

    Options for solution process, specified as a structure. Createor modify the options structure using optimset. fzero usesthese options structure fields.

    Display

    Level of display:

    • 'off' displays no output.

    • 'iter' displays output at eachiteration.

    • 'final' displays just the finaloutput.

    • 'notify' (default) displays outputonly if the function does not converge.

    FunValCheck

    Check whether objective functionvalues are valid.

    • 'on' displays an error when theobjective function returns a value that is complex, Inf,or NaN.

    • The default, 'off', displays noerror.

    OutputFcn

    Specify one or more user-definedfunctions that an optimization function calls at each iteration, eitheras a function handle or as a cell array of function handles. The defaultis none ([]). See Output Functions.

    PlotFcns

    Plot various measures of progresswhile the algorithm executes. Select from predefined plots or writeyour own. Pass a function handle or a cell array of function handles.The default is none ([]).

    • @optimplotx plots the current point.

    • @optimplotfval plots the functionvalue.

    For information on writing a custom plot function,see Plot Functions.

    TolX

    Termination tolerance on x,a positive scalar. The default is eps, 2.2204e–16.

    Example: options = optimset('FunValCheck','on')

    Data Types: struct

    problem — Root-finding problemstructure

    Root-finding problem, specified as a structure with all of thefollowing fields.

    objective

    Objective function

    x0

    Initial point for x,real scalar or 2-element vector

    solver

    'fzero'

    options

    Options structure, typically createdusing optimset

    For an example, see Solve Problem Structure.

    Data Types: struct

    Output Arguments

    collapse all

    x — Location of root or sign changereal scalar

    Location of root or sign change, returned as a scalar.

    fval — Function value at xreal scalar

    Function value at x, returned as a scalar.

    exitflag — Integer encoding the exit conditioninteger

    Integer encoding the exit condition, meaning the reason fsolve stoppedits iterations.

    1

    Function converged to a solution x.

    -1

    Algorithm was terminated by the output function or plotfunction.

    -3

    NaN or Inf functionvalue was encountered while searching for an interval containing asign change.

    -4

    Complex function value was encountered while searchingfor an interval containing a sign change.

    -5

    Algorithm might have converged to a singular point.

    -6

    fzero did not detect a sign change.

    output — Information about root-finding processstructure

    Information about root-finding process, returned as a structure.The fields of the structure are:

    intervaliterations

    Number of iterations taken to find an interval containinga root

    iterations

    Number of zero-finding iterations

    funcCount

    Number of function evaluations

    algorithm

    'bisection, interpolation'

    message

    Exit message

    More About

    collapse all

    Algorithms

    The fzero commandis a function file. The algorithm, created by T. Dekker,uses a combination of bisection, secant, and inverse quadratic interpolationmethods. An Algol 60 version, with some improvements, is given in [1]. A Fortran version, upon which fzero isbased, is in [2].

    References

    [1] Brent, R., Algorithms forMinimization Without Derivatives, Prentice-Hall, 1973.

    [2] Forsythe, G. E., M. A. Malcolm, and C.B. Moler, Computer Methods for Mathematical Computations,Prentice-Hall, 1976.

  • 相关阅读:
    5.16欢乐赛
    卢卡斯定理
    noip2017 宝藏
    [JSOI2009]计数问题
    HDU 1160 FatMouse's Speed
    HDU 1260 Tickets
    HDU 1176 免费馅饼
    HDU 1114 Piggy-Bank
    HDU 1074 Doing Homework
    HDU 1069 Monkey and Banana
  • 原文地址:https://www.cnblogs.com/vigorz/p/10499120.html
Copyright © 2020-2023  润新知