BZOJ4487 [Jsoi2015]染色问题
题目描述
题目分析
发现三个限制,大力容斥推出式子是(sum_{i=0}^{N}sum_{j=0}^{M}sum_{k=0}^{C}(-1)^{N+M+C-i-j-k}*(k+1)^{i*j}*inom{N}{i}*inom{M}{j}*inom{C}{k})
由于数据范围较小,支持(O(nmC))的做法。直接暴力预处理幂和组合数,暴力计算即可。
是代码呢
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int mo=1e9+7;
ll C[405][405],n,m,c,ans;
int p[405][160002];
int main()
{
cin>>n>>m>>c;
C[0][0]=1;
for(int i=1;i<=max(n,max(m,c));i++){
C[i][0]=1;
for(int j=1;j<=i;j++){
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mo;
}
}
for(int i=1;i<=c+1;i++){
p[i][0]=1;
for(int j=1;j<=n*m;j++){
ll t=1ll*i*p[i][j-1]%mo;
p[i][j]=t;
}
}
for(int i=0;i<=n;i++)
for(int j=0;j<=m;j++)
for(int k=0;k<=c;k++){
(ans+=1ll*C[n][i]*C[m][j]%mo*C[c][k]%mo*p[k+1][i*j]%mo*((n+m+c-i-j-k)%2==0?1:-1))%=mo;
}
ans=(ans+mo)%mo;
cout<<ans;
}