• three.js cannon.js物理引擎之齿轮动画


    郭先生今天继续说一说cannon.js物理引擎,并用之前已经学习过的知识实现一个小动画,知识点包括ConvexPolyhedron多边形、Shape几何体、Body刚体、HingeConstraint铰链约束等等知识。因为我之前用纯three.js 的THREEBSP实现过一个静态的齿轮,现在就想配合cannon.js让它的转动更加的符合实际而不是匀速转动。下面我们来说说我们要做的这个案例,这个小案例是由5个齿轮组成,最左面的是有动力的齿轮,我们可以控制它的速度,而右面三个齿轮是可以移动的,我们可以自由移动(有点类似于变速箱),嗯就是怎么简单。下面我们来说一说这个是怎么实现的,效果如下图,在线案例请点击博客原文

    1. three.js 实现齿轮模型

    three.js几何体在最前面我已经说过了,实现一个这样的模型(在不考虑引用模型的情况下),我们可以考虑直接使用Geometry来绘制或者向THREE.Group()对象中添加基础几何体来绘制,这里我们使用第二种方法。这里的思路就是使用ConvexGeometry凸包做出锯齿的齿,然后使用圆柱填充即可,如下图,

    下面是相关部分代码

    var meshA, meshB, meshC, meshD, meshE;
    var bodyA, bodyB, bodyC, bodyD, bodyE;
    var axleA, axleB, axleC, axleD, axleE;
    var pos = [-8.5, 0], pos1 = [6.4, 8], pos2 = [8.5, 0], pos3 = [10.6, -13];
    var radius1 = 2, radius2 = 4, radius3 = 6;
    var length = 0.5, thickness = 3;
    var sin375 = 0.075, cos375 = 0.997;
    var sin75 = 0.131, cos75 = 0.991;
    var sin15 = 0.259, cos15 = 0.966;
    var params = {
        positionX: 0,
        positionY: 0,
        speed: 1,
    }
    
    var triangleMesh1 = this.getTriangleMesh(sin15, cos15, radius1);
    var triangleMesh2 = this.getTriangleMesh(sin75, cos75, radius2);
    var triangleMesh3 = this.getTriangleMesh(sin375, cos375, radius3);
    meshA = new THREE.Group();
    meshB = new THREE.Group();
    meshC = new THREE.Group();
    meshD = new THREE.Group();
    meshE = new THREE.Group();
    for(let i=0; i<24; i++) {
        let angle = Math.PI * 2 * i * 15 / 360;
        let itemMesh = triangleMesh2.clone();
        itemMesh.rotation.z = angle;
        meshA.add(itemMesh.clone());
        meshB.add(itemMesh.clone());
        meshD.add(itemMesh.clone());
    }
    for(let i=0; i<12; i++) {
        let angle = Math.PI * 2 * i * 30 / 360;
        let itemMesh = triangleMesh1.clone();
        itemMesh.rotation.z = angle;
        meshC.add(itemMesh.clone());
    }
    for(let i=0; i<48; i++) {
        let angle = Math.PI * 2 * i * 7.5 / 360;
        let itemMesh = triangleMesh3.clone();
        itemMesh.rotation.z = angle;
        meshE.add(itemMesh.clone());
    }
    let cylindMesh1 = new THREE.Mesh(new THREE.CylinderGeometry(radius1,radius1,thickness,32,1), new THREE.MeshNormalMaterial());
    let cylindMesh2 = new THREE.Mesh(new THREE.CylinderGeometry(radius2,radius2,thickness,32,1), new THREE.MeshNormalMaterial());
    let cylindMesh3 = new THREE.Mesh(new THREE.CylinderGeometry(radius3,radius3,thickness,32,1), new THREE.MeshNormalMaterial());
    cylindMesh1.rotation.x = Math.PI / 2;
    cylindMesh2.rotation.x = Math.PI / 2;
    cylindMesh3.rotation.x = Math.PI / 2;
    meshA.add(cylindMesh2.clone());
    meshB.add(cylindMesh2.clone());
    meshC.add(cylindMesh1.clone());
    meshD.add(cylindMesh2.clone());
    meshE.add(cylindMesh3.clone());
    
    let cylindMesh = new THREE.Mesh(new THREE.CylinderGeometry(0.5,0.5,10,6,1), new THREE.MeshPhongMaterial({color: 0xffcc77, flatShading: true}));
    cylindMesh.rotation.x = Math.PI / 2;
    meshA.add(cylindMesh.clone());
    meshB.add(cylindMesh.clone());
    meshC.add(cylindMesh.clone());
    meshD.add(cylindMesh.clone());
    meshE.add(cylindMesh.clone());
    
    
    scene.add(meshA);
    scene.add(meshB);
    scene.add(meshC);
    scene.add(meshD);
    scene.add(meshE);
    
    getTriangleMesh(sin, cos, radius) {
        var pointsArr = [[sin * radius, cos * radius, thickness / 2], [sin * radius, cos * radius, -thickness / 2], [-sin * radius, cos * radius, thickness / 2], [-sin * radius, cos * radius, -thickness / 2], [0, radius + length, thickness / 2], [0, radius + length, -thickness / 2]];
        var points = pointsArr.map(d => new THREE.Vector3(d[0],d[1],d[2]));
        var triangle = new ConvexGeometry(points);
        return new THREE.Mesh(triangle, new THREE.MeshNormalMaterial());;
    },

    2. 添加cannon.js物理引擎

    这里就要用到前面两篇的内容了,一个是HingeConstraint铰链约束,另一是ConvexPolyhedron多边形。齿轮沿着轴旋转,我们通过铰链约束把齿轮和轴约束到一起,让齿轮仅沿着轴的方向转动,接下来是通过ConvexPolyhedron多边形制作出齿轮的齿,然后通过Body的addShape方法,将齿轮的齿添加到刚体中。思路其实是很简单的,不过里面有一些小计算。
    下面我们看代码

    //齿轮齿的shape
    let verts = [
        new CANNON.Vec3(-sin75 * radius1, -(radius1 + length - cos75 * radius1) / 2, thickness / 2),
        new CANNON.Vec3(0, (radius1 + length - cos75 * radius1) / 2, thickness / 2),
        new CANNON.Vec3(sin75 * radius1, -(radius1 + length - cos75 * radius1) / 2, thickness),
        new CANNON.Vec3(-sin75 * radius1, -(radius1 + length - cos75 * radius1) / 2, -thickness / 2),
        new CANNON.Vec3(0, (radius1 + length - cos75 * radius1) / 2, -thickness / 2),
        new CANNON.Vec3(sin75 * radius1, -(radius1 + length - cos75 * radius1) / 2, -thickness / 2),
    ];
    let faces = [[0,2,1], [3,4,5], [0,1,3], [1,4,3], [5,4,1], [2,5,1], [3,5,2], [3,2,0]];
    let shape = new CANNON.ConvexPolyhedron(verts, faces);
    //齿轮的轴
    axleA = new CANNON.Body({
        mass: 0,
        position: new CANNON.Vec3(pos[0], pos[1], 0),
        shape: new CANNON.Cylinder(0.1, 0.1, 1, 3),
    })
    //齿轮刚体
    bodyA = new CANNON.Body({
        mass: 1,
        position: new CANNON.Vec3(pos[0], pos[1], 0)
    })
    //为齿轮刚体添加齿
    for(let i=0; i<12; i++) {
        let angle = i / 12 * Math.PI * 2;
        let x = Math.sin(angle) * (cos15 * radius1 + (radius1 + length - cos15 * radius1) / 2);
        let y = Math.cos(angle) * (cos15 * radius1 + (radius1 + length - cos15 * radius1) / 2);
        bodyC.addShape(shape, new CANNON.Vec3(x, y, 0), new CANNON.Quaternion().setFromEuler(0, 0, -angle));
    }
    //为轮和齿设置铰链约束
    var c1 = new CANNON.HingeConstraint(axleA, bodyA, { 
        pivotA: new CANNON.Vec3(0, 0, 0),
        axisA: new CANNON.Vec3(0, 0, 1),
        pivotB: new CANNON.Vec3(0, 0, 0),
        axisB: new CANNON.Vec3(0, 0, 1),
        maxForce: 100
    });
    world.addConstraint(c1);
    //让齿轮不断的动起来
    bodyA.angularVelocity.set(0, 0, params.speed);

    然后在制作其他四个齿轮,然后放在不同的位置,在通过gui设置一些可操作项。这样我们就完成了一个简单的齿轮机组了,这一系列的cannon.js的文章应该还剩一两篇。希望大家都掌握好。

    转载请注明地址:郭先生的博客

  • 相关阅读:
    BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)
    BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)
    BZOJ.1014.[JSOI2008]火星人(Splay 二分 Hash)
    BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)
    BZOJ.1011.[HNOI2008]遥远的行星(思路 枚举)
    BZOJ.1013.[JSOI2008]球形空间产生器(高斯消元)
    BZOJ.1007.[HNOI2008]水平可见直线(凸壳 单调栈)
    BZOJ.1003.[ZJOI2006]物流运输(DP 最短路Dijkstra)
    BZOJ.1001.[BeiJing2006]狼抓兔子(最小割ISAP)
    BZOJ.1085.[SCOI2005]骑士精神(迭代加深搜索)
  • 原文地址:https://www.cnblogs.com/vadim-web/p/14484304.html
Copyright © 2020-2023  润新知