• 和项目组研究计算几何


    一,凸包

    二维凸包:可用极角排序后每次倍增一个点看是否在栈顶两个点内侧,在内侧就加入栈,否则弹出一个。优化是在省去了计算极角的计算量,采用xy排序,从x最小倍增一遍求上边界,再从x最大反过来求下边界。二维凸包构造想法比较简单。

    凸多边形有一些有趣的性质

    设边数为n

    内角和 =(n-2)×180°

    外角和 = 360°

    对角线的条数=C(n,2)-n=n(n-3)/2

    欧拉公式 凸多边形有n个点,m条边,r个面,则 n - m + r = 2

    1.POJ1113 注意精度,这里有个公式 城堡围墙长度最小值 = 城堡顶点坐标构成的散点集的凸包总边长 + 半径为L的圆周长

    #include<iostream>
    #include <algorithm>
    #include<math.h>
    using namespace std;
    #define eps 1e-8
    const double PI = acos(-1.0);
    struct point {
        double x, y;
        point() {
        }
        point(int a, int b) {
            x = a, y = b;
        }
    };
    
    int sgn(double a) {
        if (fabs(a) < eps)
            return 0;
        if (a > eps)
            return 1;
        return -1;
    }
    double dis(point a, point b) {
        return sqrt((b.x - a.x) * (b.x - a.x) + (b.y - a.y) * (b.y - a.y));
    }
    
    double cross(point op, point sp, point ep) {
        return (sp.x - op.x) * (ep.y - op.y) - (ep.x - op.x) * (sp.y - op.y);
    }
    int cmp(point a, point b) {
        return (a.y == b.y) ? (a.x < b.x) : a.y < b.y;
    }
    double graham(point pnt[], int n, point res[]) {
        int i, len, top = 1;
        sort(pnt, pnt + n, cmp);
        res[0] = pnt[0];
        res[1] = pnt[1];
        for (i = 2; i < n; i++) {
            while (top && sgn(cross(pnt[i], res[top], res[top - 1])) >= 0)
                top--;
            res[++top] = pnt[i];
        }
        len = top;
        for (i = n - 2; i >= 0; i--) {
            while (top != len && sgn(cross(pnt[i], res[top], res[top - 1])) >= 0)
                top--;
            res[++top] = pnt[i];
        }
        res[top] = res[0];
        double ans = 0;
        for (int p = 0; p < top; p++) {
            ans += dis(res[p], res[p + 1]);
        }
        return ans;
    }
    
    int main() {
    //    freopen("data3.txt", "r", stdin);
        point pnt[50003], res[50003];
        int i, n;
        double L;
        while (scanf("%d%lf", &n, &L) != EOF) {
            if (n == 2) {
                for (i = 0; i < 2; i++)
                    scanf("%lf%lf", &pnt[i].x, &pnt[i].y);
                printf("%.0lf
    ", dis(pnt[0], pnt[1]) + L * 2 * PI);
                continue;
            }
            for (i = 0; i < n; i++)
                scanf("%lf%lf", &pnt[i].x, &pnt[i].y);
            printf("%.0lf
    ", graham(pnt, n, res) + L * 2 * PI);
        }
        return 0;
    }

     2.HDU 1872 枚举状态,使用位运算

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <iostream>
    using namespace std;
    #define MAXN 20
    int N;
    #define eps 1e-8
    const double PI = acos(-1.0);
    
    struct point {
        double x, y;
        point() {
        }
        point(double a, double b) {
            x = a, y = b;
        }
    };
    struct Node {
        point pos;
        int val, len;
    } tree[MAXN];
    int sgn(double a) {
        if (fabs(a) < eps)
            return 0;
        if (a > eps)
            return 1;
        return -1;
    }
    double dis(point a, point b) {
        return sqrt((b.x - a.x) * (b.x - a.x) + (b.y - a.y) * (b.y - a.y));
    }
    
    double cross(point op, point sp, point ep) {
        return (sp.x - op.x) * (ep.y - op.y) - (ep.x - op.x) * (sp.y - op.y);
    }
    int cmp(point a, point b) {
        if (a.y < b.y)
            return 1;
        if (a.y == b.y)
            if (a.x < b.x)
                return 1;
        return 0;
    }
    double graham(point pnt[], int n) {
        point res[MAXN];
        int i, len, top = 1;
        sort(pnt, pnt + n, cmp);
        res[0] = pnt[0];
        res[1] = pnt[1];
        for (i = 2; i < n; i++) {
            while (top && sgn(cross(pnt[i], res[top], res[top - 1])) >= 0)
                top--;
            res[++top] = pnt[i];
        }
        len = top;
    
        for (i = n - 2; i >= 0; i--) {
            while (top != len && sgn(cross(pnt[i], res[top], res[top - 1])) >= 0)
                top--;
            res[++top] = pnt[i];
        }
        res[top] = res[0];
        double ans = 0;
        for (int p = 0; p < top; p++) {
            ans += dis(res[p], res[p + 1]);
        }
        return ans;
    }
    struct Ans {
        int bit;
        double ex_len;
        Ans() {
            bit = 0, ex_len = 0;
        }
    };
    int main() {
    //    freopen("data3.txt", "r", stdin);
        point pnt[MAXN];
        int tot;
        int min_val, min_num;
        int cas = 1;
        while (scanf("%d", &N) && N) {
            if (cas > 1)
                puts("");
            printf("Forest %d
    ", cas++);
            Ans ans;
            min_val = min_num = 0x3fffffff;
            for (int i = 0; i < N; i++) {
                scanf("%lf%lf%d%d", &tree[i].pos.x, &tree[i].pos.y, &tree[i].val,
                        &tree[i].len);
            }
            int cut_len, cut_val;
            for (int bit = 0; bit < (1 << N); bit++) {
                cut_len = cut_val = tot = 0;
                for (int j = 0; j < N; j++) {
                    if (bit & (1 << j)) {
                        cut_len += tree[j].len;
                        cut_val += tree[j].val;
                    } else {
                        pnt[tot].x = tree[j].pos.x, pnt[tot++].y = tree[j].pos.y;
                    }
                }
                if (cut_val > min_val)
                    continue;
                double need_len = graham(pnt, tot);
                if (need_len <= cut_len) {
                    if (min_val > cut_val
                            || (min_val == cut_val && N - tot < min_num)) {
                        min_val = cut_val, min_num = N - tot;
                        ans.bit = bit;
                        ans.ex_len = cut_len - need_len;
                    }
                }
            }
            printf("Cut these trees:");
            for (int i = 0; i < N; i++)
                if (ans.bit & 1 << i)
                    printf(" %d", i + 1);
            puts("");
            printf("Extra wood: %.2lf
    ", ans.ex_len);
        }
        return 0;
    }

    三维凸包 倍增思想

    #include<iostream>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    const int MAXN = 505;
    const double eps = 1e-8;
    
    int zero(double x) {
        if (fabs(x) < eps)
            return 0;
        return (x > eps) ? 1 : -1;
    }
    struct Point {
        double x, y, z;
        Point() {
        }
        Point(double xx, double yy, double zz) :
                x(xx), y(yy), z(zz) {
        }
        Point operator -(const Point p1) {  //两向量之差
            return Point(x - p1.x, y - p1.y, z - p1.z);
        }
        Point operator *(Point p) {   //叉乘
            return Point(y * p.z - z * p.y, z * p.x - x * p.z, x * p.y - y * p.x);
        }
        double operator ^(Point p) { //点乘
            return (x * p.x + y * p.y + z * p.z);
        }
    };
    
    struct CH3D {
        struct face {
            int a, b, c; //凸包一个面上三个点的编号
            bool ok;  //表示该面是否属于最终凸包中的面
        };
        int n;   //顶点数
        Point P[MAXN];  //初始顶点
    
        int triangle_num;  //凸包表面的三角形数
        face F[8 * MAXN];
    
        int g[MAXN][MAXN]; //凸包表面的三角形
    
        double vlen(Point a) {
            return sqrt(a.x * a.x + a.y * a.y + a.z * a.z);
        }
        Point cross(const Point &a, const Point &b, const Point &c) {
            return Point((b.y - a.y) * (c.z - a.z) - (b.z - a.z) * (c.y - a.y),
                    -((b.x - a.x) * (c.z - a.z) - (b.z - a.z) * (c.x - a.x)),
                    (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x));
        }
        //三角形面积*2
        double area(Point a, Point b, Point c) {
            return vlen((b - a) * (c - a));
        }
        //四面体a到其他三点有向距离有向体积*6
        double volume(Point a, Point b, Point c, Point d) {
            return (b - a) * (c - a) ^ (d - a);
        }
        //点在面同向返回正数
        int dblcmp(Point &p, face &f) {
            double v = volume(P[f.a], P[f.b], P[f.c], p);
            if (fabs(v) < eps)
                return 0;
            return (v > eps) ? 1 : -1;
        }
        void deal(int p, int a, int b) {
            int f = g[a][b];
            face add;
            if (F[f].ok) {
                if (dblcmp(P[p], F[f]) > 0)
                    dfs(p, f);
                else {
                    add.a = b;
                    add.b = a;
                    add.c = p;
                    add.ok = 1;
                    g[p][b] = g[a][p] = g[b][a] = triangle_num;
                    F[triangle_num++] = add;
                }
            }
        }
        void dfs(int p, int now) {
            F[now].ok = 0;
            deal(p, F[now].b, F[now].a);
            deal(p, F[now].c, F[now].b);
            deal(p, F[now].a, F[now].c);
        }
        //调整使前四个点不共面
        bool check_4point() {
            int i, flag = 1;
            for (i = 1; i < n; i++) {
                if (vlen(P[0] - P[i]) > eps) {
                    swap(P[1], P[i]);
                    flag = 0;
                    break;
                }
            }
            if (flag)
                return 0;
            flag = 1;
            for (i = 2; i < n; i++) {
                if (vlen((P[0] - P[1]) * (P[1] - P[i])) > eps) {
                    swap(P[2], P[i]);
                    flag = 0;
                    break;
                }
            }
            if (flag)
                return 0;
            flag = 1;
            for (i = 3; i < n; i++) {
                if (fabs((P[0] - P[1]) * (P[1] - P[2]) ^ (P[0] - P[i])) > eps) {
                    swap(P[3], P[i]);
                    return 1;
                }
            }
            return 0;
        }
        //构建三维凸包
        void build() {
            int i, j, tmp;
            face add;
            triangle_num = 0;
            if (n < 4)
                return;
            if (!check_4point()) //调整前4个点,找不到不共面4个点则无法构建凸包; 若以保证,则可去掉
                return;
            for (i = 0; i < 4; i++) { //根据前4个点产生4个三角面
                add.a = (i + 1) % 4;
                add.b = (i + 2) % 4;
                add.c = (i + 3) % 4;
                add.ok = 1;
                if (dblcmp(P[i], add) > 0)
                    swap(add.b, add.c);
                g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.a] = triangle_num;
                F[triangle_num++] = add;
            }
            for (i = 4; i < n; i++) {
                for (j = 0; j < triangle_num; j++) {
                    if (F[j].ok && dblcmp(P[i], F[j]) > 0) {
                        dfs(i, j);
                        break;
                    }
                }
            }
            tmp = triangle_num;
            for (i = triangle_num = 0; i < tmp; i++)
                if (F[i].ok) {
                    F[triangle_num++] = F[i];
                }
        }
        //三维凸包表面积
        double area() {
            double res = 0.0;
            if (n == 3) {
                Point p = cross(P[0], P[1], P[2]);
                res = vlen(p) / 2.0;
                return res;
            }
            for (int i = 0; i < triangle_num; i++)
                res += fabs(area(P[F[i].a], P[F[i].b], P[F[i].c]));
            return res / 2.0;
        }
        //三维凸包体积
        double volume() {
            double res = 0.0;
            Point tmp(0, 0, 0);
            for (int i = 0; i < triangle_num; i++)
                res += volume(tmp, P[F[i].a], P[F[i].b], P[F[i].c]);
            return fabs(res / 6.0);
        }
        //判断两个三角形共面
        bool same(int s, int t) {
            Point a = P[F[s].a];
            Point b = P[F[s].b];
            Point c = P[F[s].c];
            return !zero(volume(a, b, c, P[F[t].a]))
                    && !zero(volume(a, b, c, P[F[t].b]))
                    && !zero(volume(a, b, c, P[F[t].c]));
        }
        //三维凸包表面多边形个数
        int polygon() {
            int i, j, res, flag;
            for (i = res = 0; i < triangle_num; i++) {
                flag = 1;
                for (j = 0; j < i; j++)
                    if (same(i, j)) {
                        flag = 0;
                        break;
                    }
                res += flag;
            }
            return res;
        }
    };
    
    CH3D hull;
    
    int main() {
    //    freopen("data2.txt", "r", stdin);
        while (~scanf("%d", &hull.n)) {
            for (int i = 0; i < hull.n; i++)
                scanf("%lf%lf%lf", &hull.P[i].x, &hull.P[i].y, &hull.P[i].z);
            hull.build();
            printf("%d
    ", hull.polygon());
    //        res = hull.area();
    //        printf("%.3lf
    ", res);
        }
        return 0;
    }

    二,半平面

    对所有线极角排序去重,之后维护一个直线双向栈,倍增一条线时,检查双向栈两端栈顶两条线的交点是否在新线内侧,内侧就加入栈,否则弹出一条线,最后双向栈中的各条线组成图形的核,可以在这个区域里看到原图形的每一个位置。用这个求内切的最大的圆,就是把各边按二分半径收缩后看是否还存在核的最大半径即解。

    #include <iostream>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    
    const double eps = 1e-8;
    const int maxn = 105;
    
    int deq[maxn], tail, head, order[maxn], ln ,pn;
    
    struct Point {
        double x, y;
    } p[maxn];
    
    struct Line {
        Point a, b;
        double angle;
    } l[maxn];
    
    int sgn(double a){
        if(fabs(a)<eps) return 0;
        if(a>eps) return 1;
        return -1;
    }
    
    int cross(Point op, Point sp, Point ep)
    {
        return (sp.x-op.x) * (ep.y-op.y) - (ep.x-op.x) * (sp.y-op.y);
    }
    
    bool cmp(int u, int v) {
        int d = sgn(l[u].angle-l[v].angle);
        if (!d) return sgn(cross(l[u].a, l[v].a, l[v].b)) < 0; //极角相同时,只保留最靠里面的那条,将更靠半平面里面的放在前面去重时删除
        return d < 0;
    }
    
    void getIntersect(Line l1, Line l2, Point& p) { //求两线交点
        double dot1,dot2;
        dot1 = cross(l2.a, l1.b, l1.a);
        dot2 = cross(l1.b, l2.b, l1.a);
        p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1);
        p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1);
    }
    
    bool judge(Line l0, Line l1, Line l2) {
        Point p;
        getIntersect(l1, l2, p);
        return sgn(cross(p, l0.a, l0.b)) > 0; //大于小于符号与上面cmp()中注释处相反
    }
    
    bool halfPlaneIntersection() {
        int i, j;
        for (i = 0; i < ln; i++) order[i] = i;
        sort(order, order+ln, cmp);
        for (i = 1, j = 0; i < ln; i++)
            if (sgn(l[order[i]].angle-l[order[j]].angle) > 0)
                order[++j] = order[i];
        ln = j + 1;
        deq[0] = order[0];
        deq[1] = order[1];
        head = 0;
        tail = 1;
        for (i = 2; i < ln; i++) {
            while (head < tail && judge(l[order[i]], l[deq[tail-1]], l[deq[tail]])) tail--;
            while (head < tail && judge(l[order[i]], l[deq[head+1]], l[deq[head]])) head++;
            deq[++tail] = order[i];
        }
        while (head < tail && judge(l[deq[head]], l[deq[tail-1]], l[deq[tail]])) tail--;
        while (head < tail && judge(l[deq[tail]], l[deq[head+1]], l[deq[head]])) head++;
        if (head + 1 >= tail) return 0;
        //求出核多边形点p[]
        deq[++tail] = deq[head];
        for(pn=0,i=head;i<tail;i++,pn++)
            getIntersect(l[deq[i]],l[deq[i+1]],p[pn]);
        return 1;
    }
    int main(){
        //freopen("data.txt","r",stdin);
        int N,i;
        int cnt=1;
        while(scanf("%d",&N)&&N){
            if(cnt>1) printf("
    ");
            printf("Floor #%d
    ",cnt++);
            for(i=0;i<N;i++)
                scanf("%lf%lf",&p[i].x,&p[i].y);
            for(i=1;i<N;i++){
                l[i-1].a=p[i-1],l[i-1].b=p[i];
                l[i-1].angle = atan2(p[i].y-p[i-1].y, p[i].x-p[i-1].x); //atan2(dy, dx)返回弧度取值范围为-PI到PI
            }
            l[N-1].a=p[N-1],l[N-1].b=p[0];
            l[N-1].angle = atan2(p[0].y-p[N-1].y, p[0].x-p[N-1].x);
            ln=N;
            if(halfPlaneIntersection()) printf("Surveillance is possible.
    ");
            else printf("Surveillance is impossible.
    ");
        }
    return 0;
    }

     

    三,三维几何 线段

    与二维相似综合使用点乘叉乘计算,三维的叉乘比较特殊,两个向量的叉乘为垂直这两个向量的向量,根据这个性质适合求法线,四面体的高等等。和二维一样,点乘判垂直,叉乘判平行,点乘另一个应用是求一个向量在另一个单位向量上的投影长度。

    HDU 4741

    //三维几何函数库
    #include <math.h>
    #define eps 1e-8
    #define zero(x) (((x)>0?(x):-(x))<eps)
    struct point3{double x,y,z;};
    struct line3{point3 a,b;};
    struct plane3{point3 a,b,c;};
    
    //计算叉积 U x V
    point3 xmult(point3 u,point3 v){
        point3 ret;
        ret.x=u.y*v.z-v.y*u.z;
        ret.y=u.z*v.x-u.x*v.z;
        ret.z=u.x*v.y-u.y*v.x;
        return ret;
    }
    
    //计算点积 U . V
    double dmult(point3 u,point3 v){
        return u.x*v.x+u.y*v.y+u.z*v.z;
    }
    
    //矢量差 U - V
    point3 subt(point3 u,point3 v){
        point3 ret;
        ret.x=u.x-v.x;
        ret.y=u.y-v.y;
        ret.z=u.z-v.z;
        return ret;
    }
    //矢量和 U + V
    point3 plusv(point3 u, point3 v) {
        point3 ret;
        ret.x = u.x + v.x;
        ret.y = u.y + v.y;
        ret.z = u.z + v.z;
        return ret;
    }
    //取平面法向量
    point3 pvec(plane3 s){
        return xmult(subt(s.a,s.b),subt(s.b,s.c));
    }
    point3 pvec(point3 s1,point3 s2,point3 s3){
        return xmult(subt(s1,s2),subt(s2,s3));
    }
    
    //两点距离,单参数取向量大小
    double distance(point3 p1,point3 p2){
        return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z));
    }
    
    //向量大小
    double vlen(point3 p){
        return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
    }
    
    //判三点共线
    int dots_inline(point3 p1,point3 p2,point3 p3){
        return vlen(xmult(subt(p1,p2),subt(p2,p3)))<eps;
    }
    
    //判四点共面
    int dots_onplane(point3 a,point3 b,point3 c,point3 d){
        return zero(dmult(pvec(a,b,c),subt(d,a)));
    }
    
    //判点是否在线段上,包括端点和共线
    int dot_online_in(point3 p,line3 l){
        return zero(vlen(xmult(subt(p,l.a),subt(p,l.b))))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&
            (l.a.y-p.y)*(l.b.y-p.y)<eps&&(l.a.z-p.z)*(l.b.z-p.z)<eps;
    }
    int dot_online_in(point3 p,point3 l1,point3 l2){
        return zero(vlen(xmult(subt(p,l1),subt(p,l2))))&&(l1.x-p.x)*(l2.x-p.x)<eps&&
            (l1.y-p.y)*(l2.y-p.y)<eps&&(l1.z-p.z)*(l2.z-p.z)<eps;
    }
    
    //判点是否在线段上,不包括端点
    int dot_online_ex(point3 p,line3 l){
        return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y)||!zero(p.z-l.a.z))&&
            (!zero(p.x-l.b.x)||!zero(p.y-l.b.y)||!zero(p.z-l.b.z));
    }
    int dot_online_ex(point3 p,point3 l1,point3 l2){
        return dot_online_in(p,l1,l2)&&(!zero(p.x-l1.x)||!zero(p.y-l1.y)||!zero(p.z-l1.z))&&
            (!zero(p.x-l2.x)||!zero(p.y-l2.y)||!zero(p.z-l2.z));
    }
    
    //判点是否在空间三角形上,包括边界,三点共线无意义
    int dot_inplane_in(point3 p,plane3 s){
        return zero(vlen(xmult(subt(s.a,s.b),subt(s.a,s.c)))-vlen(xmult(subt(p,s.a),subt(p,s.b)))-
            vlen(xmult(subt(p,s.b),subt(p,s.c)))-vlen(xmult(subt(p,s.c),subt(p,s.a))));
    }
    int dot_inplane_in(point3 p,point3 s1,point3 s2,point3 s3){
        return zero(vlen(xmult(subt(s1,s2),subt(s1,s3)))-vlen(xmult(subt(p,s1),subt(p,s2)))-
            vlen(xmult(subt(p,s2),subt(p,s3)))-vlen(xmult(subt(p,s3),subt(p,s1))));
    }
    
    //判点是否在空间三角形上,不包括边界,三点共线无意义
    int dot_inplane_ex(point3 p,plane3 s){
        return dot_inplane_in(p,s)&&vlen(xmult(subt(p,s.a),subt(p,s.b)))>eps&&
            vlen(xmult(subt(p,s.b),subt(p,s.c)))>eps&&vlen(xmult(subt(p,s.c),subt(p,s.a)))>eps;
    }
    int dot_inplane_ex(point3 p,point3 s1,point3 s2,point3 s3){
        return dot_inplane_in(p,s1,s2,s3)&&vlen(xmult(subt(p,s1),subt(p,s2)))>eps&&
            vlen(xmult(subt(p,s2),subt(p,s3)))>eps&&vlen(xmult(subt(p,s3),subt(p,s1)))>eps;
    }
    
    //判两点在线段同侧,点在线段上返回0,不共面无意义
    int same_side(point3 p1,point3 p2,line3 l){
        return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))>eps;
    }
    int same_side(point3 p1,point3 p2,point3 l1,point3 l2){
        return dmult(xmult(subt(l1,l2),subt(p1,l2)),xmult(subt(l1,l2),subt(p2,l2)))>eps;
    }
    
    //判两点在线段异侧,点在线段上返回0,不共面无意义
    int opposite_side(point3 p1,point3 p2,line3 l){
        return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))<-eps;
    }
    int opposite_side(point3 p1,point3 p2,point3 l1,point3 l2){
        return dmult(xmult(subt(l1,l2),subt(p1,l2)),xmult(subt(l1,l2),subt(p2,l2)))<-eps;
    }
    
    //判两点在平面同侧,点在平面上返回0
    int same_side(point3 p1,point3 p2,plane3 s){
        return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))>eps;
    }
    int same_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){
        return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))>eps;
    }
    
    //判两点在平面异侧,点在平面上返回0
    int opposite_side(point3 p1,point3 p2,plane3 s){
        return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))<-eps;
    }
    int opposite_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){
        return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))<-eps;
    }
    
    //判两直线平行
    int parallel(line3 u,line3 v){
        return vlen(xmult(subt(u.a,u.b),subt(v.a,v.b)))<eps;
    }
    int parallel(point3 u1,point3 u2,point3 v1,point3 v2){
        return vlen(xmult(subt(u1,u2),subt(v1,v2)))<eps;
    }
    
    //判两平面平行
    int parallel(plane3 u,plane3 v){
        return vlen(xmult(pvec(u),pvec(v)))<eps;
    }
    int parallel(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
        return vlen(xmult(pvec(u1,u2,u3),pvec(v1,v2,v3)))<eps;
    }
    
    //判直线与平面平行
    int parallel(line3 l,plane3 s){
        return zero(dmult(subt(l.a,l.b),pvec(s)));
    }
    int parallel(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
        return zero(dmult(subt(l1,l2),pvec(s1,s2,s3)));
    }
    
    //判两直线垂直
    int perpendicular(line3 u,line3 v){
        return zero(dmult(subt(u.a,u.b),subt(v.a,v.b)));
    }
    int perpendicular(point3 u1,point3 u2,point3 v1,point3 v2){
        return zero(dmult(subt(u1,u2),subt(v1,v2)));
    }
    
    //判两平面垂直
    int perpendicular(plane3 u,plane3 v){
        return zero(dmult(pvec(u),pvec(v)));
    }
    int perpendicular(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
        return zero(dmult(pvec(u1,u2,u3),pvec(v1,v2,v3)));
    }
    
    //判直线与平面平行
    int perpendicular(line3 l,plane3 s){
        return vlen(xmult(subt(l.a,l.b),pvec(s)))<eps;
    }
    int perpendicular(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
        return vlen(xmult(subt(l1,l2),pvec(s1,s2,s3)))<eps;
    }
    
    //判两线段相交,包括端点和部分重合
    int intersect_in(line3 u,line3 v){
        if (!dots_onplane(u.a,u.b,v.a,v.b))
            return 0;
        if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
            return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
        return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u);
    }
    int intersect_in(point3 u1,point3 u2,point3 v1,point3 v2){
        if (!dots_onplane(u1,u2,v1,v2))
            return 0;
        if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2))
            return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);
        return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u2);
    }
    
    //判两线段相交,不包括端点和部分重合
    int intersect_ex(line3 u,line3 v){
        return dots_onplane(u.a,u.b,v.a,v.b)&&opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
    }
    int intersect_ex(point3 u1,point3 u2,point3 v1,point3 v2){
        return dots_onplane(u1,u2,v1,v2)&&opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,u2);
    }
    
    //判线段与空间三角形相交,包括交于边界和(部分)包含
    int intersect_in(line3 l,plane3 s){
        return !same_side(l.a,l.b,s)&&!same_side(s.a,s.b,l.a,l.b,s.c)&&
            !same_side(s.b,s.c,l.a,l.b,s.a)&&!same_side(s.c,s.a,l.a,l.b,s.b);
    }
    int intersect_in(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
        return !same_side(l1,l2,s1,s2,s3)&&!same_side(s1,s2,l1,l2,s3)&&
            !same_side(s2,s3,l1,l2,s1)&&!same_side(s3,s1,l1,l2,s2);
    }
    
    //判线段与空间三角形相交,不包括交于边界和(部分)包含
    int intersect_ex(line3 l,plane3 s){
        return opposite_side(l.a,l.b,s)&&opposite_side(s.a,s.b,l.a,l.b,s.c)&&
            opposite_side(s.b,s.c,l.a,l.b,s.a)&&opposite_side(s.c,s.a,l.a,l.b,s.b);
    }
    int intersect_ex(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
        return opposite_side(l1,l2,s1,s2,s3)&&opposite_side(s1,s2,l1,l2,s3)&&
            opposite_side(s2,s3,l1,l2,s1)&&opposite_side(s3,s1,l1,l2,s2);
    }
    
    //计算两直线交点,注意事先判断直线是否共面和平行!
    //线段交点请另外判线段相交(同时还是要判断是否平行!)
    point3 intersection(line3 u,line3 v){
        point3 ret=u.a;
        double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
                /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
        ret.x+=(u.b.x-u.a.x)*t;
        ret.y+=(u.b.y-u.a.y)*t;
        ret.z+=(u.b.z-u.a.z)*t;
        return ret;
    }
    point3 intersection(point3 u1,point3 u2,point3 v1,point3 v2){
        point3 ret=u1;
        double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
                /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
        ret.x+=(u2.x-u1.x)*t;
        ret.y+=(u2.y-u1.y)*t;
        ret.z+=(u2.z-u1.z)*t;
        return ret;
    }
    
    //计算直线与平面交点,注意事先判断是否平行,并保证三点不共线!
    //线段和空间三角形交点请另外判断
    point3 intersection(line3 l,plane3 s){
        point3 ret=pvec(s);
        double t=(ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z))/
            (ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z));
        ret.x=l.a.x+(l.b.x-l.a.x)*t;
        ret.y=l.a.y+(l.b.y-l.a.y)*t;
        ret.z=l.a.z+(l.b.z-l.a.z)*t;
        return ret;
    }
    point3 intersection(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
        point3 ret=pvec(s1,s2,s3);
        double t=(ret.x*(s1.x-l1.x)+ret.y*(s1.y-l1.y)+ret.z*(s1.z-l1.z))/
            (ret.x*(l2.x-l1.x)+ret.y*(l2.y-l1.y)+ret.z*(l2.z-l1.z));
        ret.x=l1.x+(l2.x-l1.x)*t;
        ret.y=l1.y+(l2.y-l1.y)*t;
        ret.z=l1.z+(l2.z-l1.z)*t;
        return ret;
    }
    
    //计算两平面交线,注意事先判断是否平行,并保证三点不共线!
    line3 intersection(plane3 u,plane3 v){
        line3 ret;
        ret.a=parallel(v.a,v.b,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.a,v.b,u.a,u.b,u.c);
        ret.b=parallel(v.c,v.a,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.c,v.a,u.a,u.b,u.c);
        return ret;
    }
    line3 intersection(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
        line3 ret;
        ret.a=parallel(v1,v2,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v1,v2,u1,u2,u3);
        ret.b=parallel(v3,v1,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v3,v1,u1,u2,u3);
        return ret;
    }
    
    //点到直线距离
    double ptoline(point3 p,line3 l){
        return vlen(xmult(subt(p,l.a),subt(l.b,l.a)))/distance(l.a,l.b);
    }
    double ptoline(point3 p,point3 l1,point3 l2){
        return vlen(xmult(subt(p,l1),subt(l2,l1)))/distance(l1,l2);
    }
    
    //点到平面距离
    double ptoplane(point3 p,plane3 s){
        return fabs(dmult(pvec(s),subt(p,s.a)))/vlen(pvec(s));
    }
    double ptoplane(point3 p,point3 s1,point3 s2,point3 s3){
        return fabs(dmult(pvec(s1,s2,s3),subt(p,s1)))/vlen(pvec(s1,s2,s3));
    }
    
    //直线到直线距离
    double linetoline(line3 u,line3 v){
        point3 n=xmult(subt(u.a,u.b),subt(v.a,v.b));
        return fabs(dmult(subt(u.a,v.a),n))/vlen(n);
    }
    double linetoline(point3 u1,point3 u2,point3 v1,point3 v2){
        point3 n=xmult(subt(u1,u2),subt(v1,v2));
        return fabs(dmult(subt(u1,v1),n))/vlen(n);
    }
    
    //两直线夹角cos值
    double angle_cos(line3 u,line3 v){
        return dmult(subt(u.a,u.b),subt(v.a,v.b))/vlen(subt(u.a,u.b))/vlen(subt(v.a,v.b));
    }
    double angle_cos(point3 u1,point3 u2,point3 v1,point3 v2){
        return dmult(subt(u1,u2),subt(v1,v2))/vlen(subt(u1,u2))/vlen(subt(v1,v2));
    }
    
    //两平面夹角cos值
    double angle_cos(plane3 u,plane3 v){
        return dmult(pvec(u),pvec(v))/vlen(pvec(u))/vlen(pvec(v));
    }
    double angle_cos(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
        return dmult(pvec(u1,u2,u3),pvec(v1,v2,v3))/vlen(pvec(u1,u2,u3))/vlen(pvec(v1,v2,v3));
    }
    
    //直线平面夹角sin值
    double angle_sin(line3 l,plane3 s){
        return dmult(subt(l.a,l.b),pvec(s))/vlen(subt(l.a,l.b))/vlen(pvec(s));
    }
    double angle_sin(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
        return dmult(subt(l1,l2),pvec(s1,s2,s3))/vlen(subt(l1,l2))/vlen(pvec(s1,s2,s3));
    }
    
    int main() {
    //    freopen("data3.txt", "r", stdin);
        int T;
        cin >> T;
        while (T--) {
            point3 a[2], b[2];
            scanf("%lf%lf%lf", &a[0].x, &a[0].y, &a[0].z);
            scanf("%lf%lf%lf", &a[1].x, &a[1].y, &a[1].z);
            scanf("%lf%lf%lf", &b[0].x, &b[0].y, &b[0].z);
            scanf("%lf%lf%lf", &b[1].x, &b[1].y, &b[1].z);
            point3 dir = xmult(subt(a[0], a[1]), subt(b[0], b[1])); //叉积与两直线垂直的向量
            double dis = 0;
            if (vlen(dir) > eps) { //判断共面
                double d = 1 / vlen(dir);
                dir.x = dir.x * d;
                dir.y = dir.y * d;
                dir.z = dir.z * d;
                dis = dmult(subt(a[0], b[0]), dir); //与单位向量的点积为这个方向的长度
                dir.x = dir.x * dis;
                dir.y = dir.y * dis;
                dir.z = dir.z * dis;
            }
            printf("%.6f
    ", fabs(dis));
            point3 pa = intersection(a[0], a[1], plusv(b[0], dir),plusv(b[1], dir));
            point3 pb = subt(pa, dir);
            printf("%lf %lf %lf %lf %lf %lf
    ", pa.x, pa.y, pa.z, pb.x, pb.y, pb.z);
        }
        return 0;
    }
  • 相关阅读:
    第十二章,结束练习
    第十一章,表单
    第十章,表格练习
    第九章,跨行跨列的表格
    第八章,表格
    第七章,列表
    第六章,body当中的属性
    第五章,标签的使用
    6. C# 命名规则
    5. c#变量
  • 原文地址:https://www.cnblogs.com/updateofsimon/p/3423730.html
Copyright © 2020-2023  润新知