• Wizard's Tour CodeForces


    大意: 给定$n$节点$m$条边无向图, 不保证连通, 求选出最多邻接边, 每条边最多选一次.

    上界为$lfloorfrac{m}{2} floor$, $dfs$贪心划分显然可以达到上界.

    #include <iostream>
    #include <sstream>
    #include <algorithm>
    #include <cstdio>
    #include <math.h>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <string.h>
    #include <bitset>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    
    #ifdef ONLINE_JUDGE
    const int N = 1e6+10;
    #else
    const int N = 111;
    #endif
    
    int n, m, cnt, vis[N];
    vector<int> g[N];
    struct {int x,y,z;} f[N];
    void add(int x, int y, int z) {
    	f[++cnt]={x,y,z};
    }
    int dfs(int x) {
    	vis[x] = ++*vis;	
    	int lst = 0;
    	for (int y:g[x]) { 
    		if (!vis[y]) {
    			int t = dfs(y);
    			if (t) add(x,y,t);
    			else if (lst) add(lst,x,y),lst=0;
    			else lst = y;
    		}
    		else if (vis[y]>vis[x]) {
    			if (lst) add(lst,x,y),lst=0;
    			else lst = y;
    		}
    	}
    	return lst;
    }
    int main() {
    	scanf("%d%d", &n, &m);
    	REP(i,1,m) {
    		int u=rd(),v=rd();
    		g[u].pb(v),g[v].pb(u);
    	}
    	REP(i,1,n) if (!vis[i]) dfs(i);
    	printf("%d
    ",cnt);
    	REP(i,1,cnt) printf("%d %d %d
    ",f[i].x,f[i].y,f[i].z);
    }
    
  • 相关阅读:
    Python自然语言处理读书笔记第7章
    [转]基于SNS的文本数据挖掘
    使用python多线程实现一个简单spider
    基于内存共享的并行排序算法慢谈(中)
    [转]为什么我反对纯算法面试题
    从客户端检测到有潜在危险的Request.Form值
    repeater 回发或回调参数无效
    Nginx安装、平滑升级与虚拟机配置
    log4j.properties的配置示例
    jquery一般方法介绍
  • 原文地址:https://www.cnblogs.com/uid001/p/10851269.html
Copyright © 2020-2023  润新知