线性插值法
线性插值是数学、计算机图形学等领域广泛使用的一种简单插值方法。
假设我们已知坐标(x0,y0)与(x1,y1),要得到[x0,x1]区间内某一位置x在直线上的值。根据图中所示,我们得到(y-y0)(x-x0)/(y1-y0)(x1-x0)
假设方程两边的值为α,那么这个值就是插值系数—从x0到x的距离与从x0到x1距离的比值。由于x值已知,所以可以从公式得到α的值
α=(x-x0)/(x1-x0)
同样,α=(y-y0)/(y1-y0)
这样,在代数上就可以表示成为:
y = (1- α)y0 + αy1
或者,
y = y0 + α(y1 - y0)
这样通过α就可以直接得到 y。实际上,即使x不在x0到x1之间并且α也不是介于0到1之间,这个公式也是成立的。在这种情况下,这种方法叫作线性外插—参见 外插值。
已知y求x的过程与以上过程相同,只是x与y要进行交换。