import numpy as np import tensorflow as tf tf.convert_to_tensor(np.ones([2, 3]))
tf.convert_to_tensor(np.zeros([2, 3]))
list tf.convert_to_tensor([1, 2]) tf.convert_to_tensor([1, 2.]) tf.convert_to_tensor([[1], [2.]])
zeros tf.zeros([]) tf.zeros([1]) tf.zeros([2, 2]) tf.zeros([2, 3, 3]) a = tf.constant([0]) tf.zeros_like(a) # 等同于tf.zeros(a.shape)
ones tf.ones(1) tf.ones([]) tf.ones([2]) tf.ones([2, 3]) a = tf.constant([0]) tf.ones_like(a) # # 等同于tf.ones(a.shape)
fill tf.fill([2, 2], 0) tf.fill([2, 2], 0) tf.fill([2, 2], 1) tf.fill([2, 2], 9)
random # 正态分布,均值为1,方差为1 tf.random.normal([2, 2], mean=1, stddev=1) tf.random.normal([2, 2]) # 截断的正态分布, tf.random.truncated_normal([2, 2], mean=0, stddev=1) # 均匀分布 tf.random.uniform([2, 2], minval=0, maxval=1) tf.random.uniform([2, 2], minval=0, maxval=100, dtype=tf.int32)
打乱idx后,a和b的索引不变 idx = tf.range(10) idx = tf.random.shuffle(idx) idx a = tf.random.normal([10, 784]) b = tf.random.uniform([10], maxval=10, dtype=tf.int32) b a = tf.gather(a, idx) b = tf.gather(b, idx) b
constant tf.constant(1) tf.constant([1]) tf.constant([1, 2.]) tf.constant([[1, 2], [3., 2]])
loss计算 无bias的loss out = tf.random.uniform([4, 10]) out y = tf.range(4) y = tf.one_hot(y, depth=10) y loss = tf.keras.losses.mse(y, out) loss loss = tf.reduce_mean(loss) loss