• 吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别


    import os
    import numpy as np
    import matplotlib.pyplot as plt
    from PIL import Image, ImageChops
    from skimage import color,data,transform,io
    
    #获取所有数据文件夹名称
    fileList = os.listdir("F:\data\flowers")
    trainDataList = []
    trianLabel = []
    testDataList = []
    testLabel = []
    
    #读取每一种花的文件
    for j in range(len(fileList)):
        data = os.listdir("F:\data\flowers\"+fileList[j])
        #取每一种花四分之一的数据作为测试数据集
        testNum = int(len(data)*0.25)
        #把每种花的图片进行testNum次乱序处理
        while(testNum>0):
            np.random.shuffle(data)
            testNum -= 1
        #把每种花经过乱序后的四分之三当作训练集
        trainData = np.array(data[:-(int(len(data)*0.25))])
        #把每种花经过乱序后的四分之一当作测试集
        testData = np.array(data[-(int(len(data)*0.25)):])
        #从上面选出来的训练集中逐张读取出对应的图片
        for i in range(len(trainData)):
            #其中这些图片都要满足jpg格式的
            if(trainData[i][-3:]=="jpg"):
                #读取一张jpg图片
                image = io.imread("F:\data\flowers\"+fileList[j]+"\"+trainData[i])
                #把这张图片变成64*64大小的图片
                image=transform.resize(image,(64,64))
                #保存改变大小的图片到trainDataList列表
                trainDataList.append(image)
                #保存这张图片的标签到trianLabel列表
                trianLabel.append(int(j))
                #随机生成一个角度,这个角度的范围在顺时针90度和逆时针90度之间
                angle = np.random.randint(-90,90)
                #然后把上面那张64*64大小的图片随机旋转angle个角度
                image =transform.rotate(image, angle)
                #把旋转得到的新图片再变成64*64大小的,因为旋转会改变一张图片的大小
                image=transform.resize(image,(64,64))
                #把旋转后并且大小是64*64的图片保存到trainDataList列表
                trainDataList.append(image)
                #把旋转后并且大小是64*64的图片对应的标签保存到trianLabel列表
                trianLabel.append(int(j))
        #逐张读取每种花的测试图片
        for i in range(len(testData)):
            #选取的图片要满足jpg格式的
            if(testData[i][-3:]=="jpg"):
                #读取一张图片
                image = io.imread("F:\data\flowers\"+fileList[j]+"\"+testData[i])
                #改变这张图片的大小为64*64
                image=transform.resize(image,(64,64))
                #把改变后的图片保存到testDataList列表中
                testDataList.append(image)
                #把这张图片对应的标签保存到testLabel列表中
                testLabel.append(int(j))
    print("图片数据读取完了...")

    #打印训练集和测试数据集以及它们对应标签的规模
    print(np.shape(trainDataList))
    print(np.shape(trianLabel))
    print(np.shape(testDataList))
    print(np.shape(testLabel))

    #保存训练集和测试数据集以及它们对应标签到磁盘
    np.save("G:\trainDataList",trainDataList)
    np.save("G:\trianLabel",trianLabel)
    np.save("G:\testDataList",testDataList)
    np.save("G:\testLabel",testLabel)
    print("数据处理完了...")

    import numpy as np
    from keras.utils import to_categorical
    
    #将训练数据集和测试数据集对应的标签转变为one-hot编码
    trainLabel = np.load("G:\trianLabel.npy")
    testLabel = np.load("G:\testLabel.npy")
    trainLabel_encoded = to_categorical(trainLabel)
    testLabel_encoded = to_categorical(testLabel)
    np.save("G:\trianLabel",trainLabel_encoded)
    np.save("G:\testLabel",testLabel_encoded)
    print("转码类别写盘完了...")

    import random
    import numpy as np
    
    trainDataList = np.load("G:\trainDataList.npy")
    trianLabel = np.load("G:\trianLabel.npy")
    print("数据加载完了...")
    
    trainIndex = [i for i in range(len(trianLabel))]
    random.shuffle(trainIndex)
    trainData = []
    trainClass = []
    for i in range(len(trainIndex)):
        trainData.append(trainDataList[trainIndex[i]])
        trainClass.append(trianLabel[trainIndex[i]])
    print("训练数据shuffle完了...")
    
    np.save("G:\trainDataList",trainData)
    np.save("G:\trianLabel",trainClass)
    print("训练数据写盘完毕...")

    X = np.load("G:\trainDataList.npy")
    Y = np.load("G:\trianLabel.npy")
    print(np.shape(X))
    print(np.shape(Y))

    import random
    import numpy as np
    
    testDataList = np.load("G:\testDataList.npy")
    testLabel = np.load("G:\testLabel.npy")
    
    testIndex = [i for i in range(len(testLabel))]
    random.shuffle(testIndex)
    testData = []
    testClass = []
    for i in range(len(testIndex)):
        testData.append(testDataList[testIndex[i]])
        testClass.append(testLabel[testIndex[i]])
    print("测试数据shuffle完了...")
    
    np.save("G:\testDataList",testData)
    np.save("G:\testLabel",testClass)
    print("测试数据写盘完毕...")

    X = np.load("G:\testDataList.npy")
    Y = np.load("G:\testLabel.npy")
    print(np.shape(X))
    print(np.shape(Y))
    print(np.shape(testData))
    print(np.shape(testLabel))

    import tensorflow as tf
    from random import shuffle
    
    INPUT_NODE = 64*64
    OUT_NODE = 5
    IMAGE_SIZE = 64
    NUM_CHANNELS = 3
    NUM_LABELS = 5
    
    #第一层卷积层的尺寸和深度
    CONV1_DEEP = 16
    CONV1_SIZE = 5
    #第二层卷积层的尺寸和深度
    CONV2_DEEP = 32
    CONV2_SIZE = 5
    #全连接层的节点数
    FC_SIZE = 512
    
    def inference(input_tensor, train, regularizer):
        #卷积
        with tf.variable_scope('layer1-conv1'):
            conv1_weights = tf.Variable(tf.random_normal([CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],stddev=0.1),name='weight')
            tf.summary.histogram('convLayer1/weights1', conv1_weights)
            conv1_biases = tf.Variable(tf.Variable(tf.random_normal([CONV1_DEEP])),name="bias")
            tf.summary.histogram('convLayer1/bias1', conv1_biases)
            conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME')
            tf.summary.histogram('convLayer1/conv1', conv1)
            relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
            tf.summary.histogram('ConvLayer1/relu1', relu1)
        #池化
        with tf.variable_scope('layer2-pool1'):
            pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
            tf.summary.histogram('ConvLayer1/pool1', pool1)
        #卷积
        with tf.variable_scope('layer3-conv2'):
            conv2_weights = tf.Variable(tf.random_normal([CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],stddev=0.1),name='weight')
            tf.summary.histogram('convLayer2/weights2', conv2_weights)
            conv2_biases = tf.Variable(tf.random_normal([CONV2_DEEP]),name="bias")
            tf.summary.histogram('convLayer2/bias2', conv2_biases)
            #卷积向前学习
            conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='SAME')
            tf.summary.histogram('convLayer2/conv2', conv2)
            relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
            tf.summary.histogram('ConvLayer2/relu2', relu2)
        #池化
        with tf.variable_scope('layer4-pool2'):
            pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
            tf.summary.histogram('ConvLayer2/pool2', pool2)
        #变型
        pool_shape = pool2.get_shape().as_list()
        #计算最后一次池化后对象的体积(数据个数节点数像素个数)
        nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
        #根据上面的nodes再次把最后池化的结果pool2变为batch行nodes列的数据
        reshaped = tf.reshape(pool2,[-1,nodes])
    
        #全连接层
        with tf.variable_scope('layer5-fc1'):
            fc1_weights = tf.Variable(tf.random_normal([nodes,FC_SIZE],stddev=0.1),name='weight')
            if(regularizer != None):
                tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc1_weights))
            fc1_biases = tf.Variable(tf.random_normal([FC_SIZE]),name="bias")
            #预测
            fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
            if(train):
                fc1 = tf.nn.dropout(fc1,0.5)
        #全连接层
        with tf.variable_scope('layer6-fc2'):
            fc2_weights = tf.Variable(tf.random_normal([FC_SIZE,64],stddev=0.1),name="weight")
            if(regularizer != None):
                tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc2_weights))
            fc2_biases = tf.Variable(tf.random_normal([64]),name="bias")
            #预测
            fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights)+fc2_biases)
            if(train):
                fc2 = tf.nn.dropout(fc2,0.5)
        #全连接层
        with tf.variable_scope('layer7-fc3'):
            fc3_weights = tf.Variable(tf.random_normal([64,NUM_LABELS],stddev=0.1),name="weight")
            if(regularizer != None):
                tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc3_weights))
            fc3_biases = tf.Variable(tf.random_normal([NUM_LABELS]),name="bias")
            #预测
            logit = tf.matmul(fc2,fc3_weights)+fc3_biases
        return logit
    import time
    import keras
    import numpy as np
    from keras.utils import np_utils
    
    X = np.load("G:\trainDataList.npy")
    Y = np.load("G:\trianLabel.npy")
    print(np.shape(X))
    print(np.shape(Y))
    print(np.shape(testData))
    print(np.shape(testLabel))
    
    batch_size = 10
    n_classes=5
    epochs=16#循环次数
    learning_rate=1e-4
    batch_num=int(np.shape(X)[0]/batch_size)
    dropout=0.75
    
    x=tf.placeholder(tf.float32,[None,64,64,3])
    y=tf.placeholder(tf.float32,[None,n_classes])
    # keep_prob = tf.placeholder(tf.float32)
    #加载测试数据集
    test_X = np.load("G:\testDataList.npy")
    test_Y = np.load("G:\testLabel.npy")
    back = 64
    ro = int(len(test_X)/back)
    
    #调用神经网络方法
    pred=inference(x,1,"regularizer")
    cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
    
    # 三种优化方法选择一个就可以
    optimizer=tf.train.AdamOptimizer(1e-4).minimize(cost)
    # train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cost)
    # train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(cost)
    
    #将预测label与真实比较
    correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    #计算准确率
    accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
    merged=tf.summary.merge_all() 
    #将tensorflow变量实例化
    init=tf.global_variables_initializer()
    start_time = time.time()
    
    with tf.Session() as sess:
        sess.run(init)
        #保存tensorflow参数可视化文件
        writer=tf.summary.FileWriter('F:/Flower_graph', sess.graph)
        for i in range(epochs):
            for j in range(batch_num):
                offset = (j * batch_size) % (Y.shape[0] - batch_size)
                # 准备数据
                batch_data = X[offset:(offset + batch_size), :]
                batch_labels = Y[offset:(offset + batch_size), :]
                sess.run(optimizer, feed_dict={x:batch_data,y:batch_labels})
                result=sess.run(merged, feed_dict={x:batch_data,y:batch_labels})
            writer.add_summary(result, i)
            loss,acc = sess.run([cost,accuracy],feed_dict={x:batch_data,y:batch_labels})
            print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc*100))
        writer.close()
        print("########################训练结束,下面开始测试###################")
        for i in range(ro):
            s = i*back
            e = s+back
            test_accuracy = sess.run(accuracy,feed_dict={x:test_X[s:e],y:test_Y[s:e]})
            print("step:%d test accuracy = %.4f%%" % (i,test_accuracy*100))
        print("Final test accuracy = %.4f%%" % (test_accuracy*100))
    
    end_time = time.time()
    print('Times:',(end_time-start_time))
    print('Optimization Completed')

  • 相关阅读:
    常用的几个JavaScript调试技巧
    一个能够编写、运行SQL查询并可视化结果的Web应用:SqlPad
    一个能够编写、运行SQL查询并可视化结果的Web应用:SqlPad
    一个能够编写、运行SQL查询并可视化结果的Web应用:SqlPad
    67 个JavaScript和CSS实用工具、库与资源
    67 个JavaScript和CSS实用工具、库与资源
    67 个JavaScript和CSS实用工具、库与资源
    SQL日常维护的语句
    ACM2096_小明A+B
    Janet Wu price
  • 原文地址:https://www.cnblogs.com/tszr/p/11227717.html
Copyright © 2020-2023  润新知