• 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型


    import numpy as np
    import matplotlib.pyplot as plt
    
    from sklearn import datasets,ensemble
    from sklearn.model_selection import train_test_split
    
    def load_data_regression():
        '''
        加载用于回归问题的数据集
        '''
        #使用 scikit-learn 自带的一个糖尿病病人的数据集
        diabetes = datasets.load_diabetes() 
        # 拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
        return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) 
    
    #集成学习随机森林RandomForestRegressor回归模型
    def test_RandomForestRegressor(*data):
        X_train,X_test,y_train,y_test=data
        regr=ensemble.RandomForestRegressor()
        regr.fit(X_train,y_train)
        print("Traing Score:%f"%regr.score(X_train,y_train))
        print("Testing Score:%f"%regr.score(X_test,y_test))
        
    # 获取分类数据
    X_train,X_test,y_train,y_test=load_data_regression() 
    # 调用 test_RandomForestRegressor
    test_RandomForestRegressor(X_train,X_test,y_train,y_test) 

    def test_RandomForestRegressor_num(*data):
        '''
        测试 RandomForestRegressor 的预测性能随  n_estimators 参数的影响
        '''
        X_train,X_test,y_train,y_test=data
        nums=np.arange(1,100,step=2)
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        testing_scores=[]
        training_scores=[]
        for num in nums:
            regr=ensemble.RandomForestRegressor(n_estimators=num)
            regr.fit(X_train,y_train)
            training_scores.append(regr.score(X_train,y_train))
            testing_scores.append(regr.score(X_test,y_test))
        ax.plot(nums,training_scores,label="Training Score")
        ax.plot(nums,testing_scores,label="Testing Score")
        ax.set_xlabel("estimator num")
        ax.set_ylabel("score")
        ax.legend(loc="lower right")
        ax.set_ylim(-1,1)
        plt.suptitle("RandomForestRegressor")
        plt.show()
        
    # 调用 test_RandomForestRegressor_num
    test_RandomForestRegressor_num(X_train,X_test,y_train,y_test) 

    def test_RandomForestRegressor_max_depth(*data):
        '''
        测试 RandomForestRegressor 的预测性能随  max_depth 参数的影响
        '''
        X_train,X_test,y_train,y_test=data
        maxdepths=range(1,20)
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        testing_scores=[]
        training_scores=[]
        for max_depth in maxdepths:
            regr=ensemble.RandomForestRegressor(max_depth=max_depth)
            regr.fit(X_train,y_train)
            training_scores.append(regr.score(X_train,y_train))
            testing_scores.append(regr.score(X_test,y_test))
        ax.plot(maxdepths,training_scores,label="Training Score")
        ax.plot(maxdepths,testing_scores,label="Testing Score")
        ax.set_xlabel("max_depth")
        ax.set_ylabel("score")
        ax.legend(loc="lower right")
        ax.set_ylim(0,1.05)
        plt.suptitle("RandomForestRegressor")
        plt.show()
        
    # 调用 test_RandomForestRegressor_max_depth
    test_RandomForestRegressor_max_depth(X_train,X_test,y_train,y_test) 

    def test_RandomForestRegressor_max_features(*data):
        '''
       测试 RandomForestRegressor 的预测性能随  max_features 参数的影响
        '''
        X_train,X_test,y_train,y_test=data
        max_features=np.linspace(0.01,1.0)
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        testing_scores=[]
        training_scores=[]
        for max_feature in max_features:
            regr=ensemble.RandomForestRegressor(max_features=max_feature)
            regr.fit(X_train,y_train)
            training_scores.append(regr.score(X_train,y_train))
            testing_scores.append(regr.score(X_test,y_test))
        ax.plot(max_features,training_scores,label="Training Score")
        ax.plot(max_features,testing_scores,label="Testing Score")
        ax.set_xlabel("max_feature")
        ax.set_ylabel("score")
        ax.legend(loc="lower right")
        ax.set_ylim(0,1.05)
        plt.suptitle("RandomForestRegressor")
        plt.show()
        
    # 调用 test_RandomForestRegressor_max_features
    test_RandomForestRegressor_max_features(X_train,X_test,y_train,y_test) 

  • 相关阅读:
    Python学习 :面向对象 -- 三大特性
    Python学习 :面向对象(一)
    小米oj #40 找小“3”
    第三次作业
    排序算法模板
    树状数组求逆序数
    最短路模板
    字典树模板
    LCS
    多项式朴素乘法
  • 原文地址:https://www.cnblogs.com/tszr/p/10801596.html
Copyright © 2020-2023  润新知