• 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型


    import numpy as np
    import matplotlib.pyplot as plt
    
    from sklearn import datasets,ensemble
    from sklearn.model_selection import train_test_split
    
    def load_data_classification():
        '''
        加载用于分类问题的数据集
        '''
        # 使用 scikit-learn 自带的 digits 数据集
        digits=datasets.load_digits() 
        # 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
        return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target) 
    
    #集成学习AdaBoost算法分类模型
    def test_AdaBoostClassifier(*data):
        '''
        测试 AdaBoostClassifier 的用法,绘制 AdaBoostClassifier 的预测性能随基础分类器数量的影响
        '''
        X_train,X_test,y_train,y_test=data
        clf=ensemble.AdaBoostClassifier(learning_rate=0.1)
        clf.fit(X_train,y_train)
        ## 绘图
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        estimators_num=len(clf.estimators_)
        X=range(1,estimators_num+1)
        ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
        ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
        ax.set_xlabel("estimator num")
        ax.set_ylabel("score")
        ax.legend(loc="best")
        ax.set_title("AdaBoostClassifier")
        plt.show()
        
    # 获取分类数据
    X_train,X_test,y_train,y_test=load_data_classification() 
    # 调用 test_AdaBoostClassifier
    test_AdaBoostClassifier(X_train,X_test,y_train,y_test) 

    def test_AdaBoostClassifier_base_classifier(*data):
        '''
        测试  AdaBoostClassifier 的预测性能随基础分类器数量和基础分类器的类型的影响
        '''
        from sklearn.naive_bayes import GaussianNB
        
        X_train,X_test,y_train,y_test=data
        fig=plt.figure()
        ax=fig.add_subplot(2,1,1)
        ########### 默认的个体分类器 #############
        clf=ensemble.AdaBoostClassifier(learning_rate=0.1)
        clf.fit(X_train,y_train)
        ## 绘图
        estimators_num=len(clf.estimators_)
        X=range(1,estimators_num+1)
        ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
        ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
        ax.set_xlabel("estimator num")
        ax.set_ylabel("score")
        ax.legend(loc="lower right")
        ax.set_ylim(0,1)
        ax.set_title("AdaBoostClassifier with Decision Tree")
        ####### Gaussian Naive Bayes 个体分类器 ########
        ax=fig.add_subplot(2,1,2)
        clf=ensemble.AdaBoostClassifier(learning_rate=0.1,base_estimator=GaussianNB())
        clf.fit(X_train,y_train)
        ## 绘图
        estimators_num=len(clf.estimators_)
        X=range(1,estimators_num+1)
        ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="Traing score")
        ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="Testing score")
        ax.set_xlabel("estimator num")
        ax.set_ylabel("score")
        ax.legend(loc="lower right")
        ax.set_ylim(0,1)
        ax.set_title("AdaBoostClassifier with Gaussian Naive Bayes")
        plt.show()
        
    # 调用 test_AdaBoostClassifier_base_classifier
    test_AdaBoostClassifier_base_classifier(X_train,X_test,y_train,y_test) 

    def test_AdaBoostClassifier_learning_rate(*data):
        '''
        测试  AdaBoostClassifier 的预测性能随学习率的影响
        '''
        X_train,X_test,y_train,y_test=data
        learning_rates=np.linspace(0.01,1)
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        traing_scores=[]
        testing_scores=[]
        for learning_rate in learning_rates:
            clf=ensemble.AdaBoostClassifier(learning_rate=learning_rate,n_estimators=500)
            clf.fit(X_train,y_train)
            traing_scores.append(clf.score(X_train,y_train))
            testing_scores.append(clf.score(X_test,y_test))
        ax.plot(learning_rates,traing_scores,label="Traing score")
        ax.plot(learning_rates,testing_scores,label="Testing score")
        ax.set_xlabel("learning rate")
        ax.set_ylabel("score")
        ax.legend(loc="best")
        ax.set_title("AdaBoostClassifier")
        plt.show()
            
    # 调用 test_AdaBoostClassifier_learning_rate
    test_AdaBoostClassifier_learning_rate(X_train,X_test,y_train,y_test)

    def test_AdaBoostClassifier_algorithm(*data):
        '''
        测试  AdaBoostClassifier 的预测性能随学习率和 algorithm 参数的影响
        '''
        X_train,X_test,y_train,y_test=data
        algorithms=['SAMME.R','SAMME']
        fig=plt.figure()
        learning_rates=[0.05,0.1,0.5,0.9]
        for i,learning_rate in enumerate(learning_rates):
            ax=fig.add_subplot(2,2,i+1)
            for i ,algorithm in enumerate(algorithms):
                clf=ensemble.AdaBoostClassifier(learning_rate=learning_rate,algorithm=algorithm)
                clf.fit(X_train,y_train)
                ## 绘图
                estimators_num=len(clf.estimators_)
                X=range(1,estimators_num+1)
                ax.plot(list(X),list(clf.staged_score(X_train,y_train)),label="%s:Traing score"%algorithms[i])
                ax.plot(list(X),list(clf.staged_score(X_test,y_test)),label="%s:Testing score"%algorithms[i])
            ax.set_xlabel("estimator num")
            ax.set_ylabel("score")
            ax.legend(loc="lower right")
            ax.set_title("learing rate:%f"%learning_rate)
        fig.suptitle("AdaBoostClassifier")
        plt.show()
        
    # 调用 test_AdaBoostClassifier_algorithm
    test_AdaBoostClassifier_algorithm(X_train,X_test,y_train,y_test)

  • 相关阅读:
    2020年3月15日python学习笔记——变量的创建过程 垃圾回收机制 变量的指向关系
    2020年3月14日python学习笔记——学习实操的程序(第一小章)--------------------重要
    2020年3月14日python学习笔记——break ,continue,while ...else....
    2020年3月14日python学习笔记——流程控制语句(if else ,while)
    2020年3月14日python学习笔记——算数运算、比较运算、逻辑运算、赋值运算
    2020年3月14日python学习笔记——列表 输入命令符
    Ubuntu 安装mysql和修改字符编码
    死锁与递归锁
    守护线程
    线程
  • 原文地址:https://www.cnblogs.com/tszr/p/10801543.html
Copyright © 2020-2023  润新知