• 吴裕雄 实战PYTHON编程(6)


    import matplotlib.pyplot as plt

    plt.rcParams['font.sans-serif']=['Simhei']
    plt.rcParams['axes.unicode_minus']=False

    listx1 = [1,5,7,9,13,16]
    listy1 = [15,50,80,40,70,50]
    plt.bar(listx1, listy1, label="男性")
    listx2 = [2,6,8,11,14,16]
    listy2 = [10,40,30,50,80,60]
    plt.bar(listx2, listy2, color="red", label="女性")
    plt.legend()
    plt.xlim(0, 20)
    plt.ylim(0, 100)
    plt.title("零花钱统计")
    plt.xlabel("年龄")
    plt.ylabel("零花钱数量")
    plt.show()

    import matplotlib.pyplot as plt

    listx = [1,5,7,9,13,16]
    listy = [15,50,80,40,70,50]
    plt.plot(listx, listy, color ="red")
    plt.show()

    import matplotlib.pyplot as plt

    listx1 = [1,5,7,9,13,16]
    listy1 = [15,50,80,40,70,50]
    plt.plot(listx1, listy1, label="Male")
    listx2 = [2,6,8,11,14,16]
    listy2 = [10,40,30,50,80,60]
    plt.plot(listx2, listy2, color="red", linewidth=5.0, linestyle="--", label="Female")
    plt.legend()
    plt.xlim(0, 20)
    plt.ylim(0, 100)
    plt.title("Pocket Money")
    plt.xlabel("Age")
    plt.ylabel("Money")
    plt.show()

    import matplotlib.pyplot as plt

    labels = ["东部", "南部", "北部", "中部"]
    sizes = [5, 10, 20, 15]
    colors = ["red", "green", "blue", "yellow"]
    explode = (0, 0, 0.05, 0)
    plt.pie(sizes,explode = explode,labels = labels,colors = colors,
    labeldistance = 1.1,autopct = "%3.1f%%",shadow = True,
    startangle = 90,pctdistance = 0.6)
    plt.axis("equal")
    plt.legend()
    plt.show()

    import numpy as np
    import matplotlib.pyplot as plt #导入绘图模块,重命名为plt
    import requests #导入网页内容抓取包
    from bs4 import BeautifulSoup as bs #导入网页解析模块,重命名为bs
    from pylab import * #导入pylab包

    rcParams['font.sans-serif'] = ['SimHei'] #让matplotlib支持简体中文

    year = [] #横坐标列表
    gdp = [] #纵坐标列表
    #url = "http://value500.com/M2GDP.html" #设置要在哪个网页抓数据
    url = "http://value500.com/M2GDP.html"
    content = requests.get(url) #获取网页内容
    print(content)
    content.encoding='utf-8' #转为utf-8编码
    content1=content.text #取得网页内容的text部分
    parse = bs(content1,"html.parser") #进行html解析
    data1 = parse.find_all("table") #获取所有表元素
    rows = data1[19].find_all("tr") #取出包含所需数据的表(网页第20个表)
    i=0 #为了不读取表头数据,设置此控制变量
    for row in rows:
    cols = row.find_all("td") #把每一行表数据存入cols变量
    if(len(cols) > 0 and i==0): #如果是第一行,则控制变量加1
    i+=1
    else: #如果不是第一行,则写入绘图列表
    year.append(cols[0].text[:-2]) #取得年份数据(数据的最后两个字符不是数据需去除)并写入图形的year轴
    gdp.append(cols[2].text) #把gdp值存入gdp轴
    plt.plot(year, gdp, linewidth=2.0) #绘制图形,线宽为2
    plt.title("1990~2016年度我国GDP") #设置图形标题
    plt.xlabel("年度") #设置x轴标题
    plt.ylabel("GDP(亿元)") #设置y轴标题
    plt.show() #显示所绘图形

    from bokeh.plotting import figure, show

    p = figure(width=800, height=400)
    listx = [1,5,7,9,13,16]
    listy = [15,50,80,40,70,50]
    p.line(listx, listy)
    show(p)

    from bokeh.plotting import figure, show, output_file

    output_file("F:\pythonBase\pythonex\lineout.html")
    p = figure(width=800, height=400)
    listx = [1,5,7,9,13,16]
    listy = [15,50,80,40,70,50]
    p.line(listx, listy)
    show(p)

    from bokeh.plotting import figure, show

    p = figure(width=800, height=400, title="零花钱统计")
    # p.title_text_color = "green"
    # p.title_text_font_size = "18pt"
    p.xaxis.axis_label = "年龄"
    p.xaxis.axis_label_text_color = "violet"
    p.yaxis.axis_label = "零花钱"
    p.yaxis.axis_label_text_color = "violet"
    dashs = [12, 4]
    listx1 = [1,5,7,9,13,16]
    listy1 = [15,50,80,40,70,50]
    p.line(listx1, listy1, line_width=4, line_color="red", line_alpha=0.3, line_dash=dashs, legend="男性")
    listx2 = [2,6,8,11,14,16]
    listy2 = [10,40,30,50,80,60]
    p.line(listx2, listy2, line_width=4, legend="女性")
    show(p)

    from bokeh.plotting import figure, show

    p = figure(width=800, height=400, title="零花钱统计")
    # p.title_text_font_size = "18pt"
    p.xaxis.axis_label = "X 轴"
    p.yaxis.axis_label = "y 轴"
    listx = [1,5,7,9,13,16]
    listy = [15,50,80,40,70,50]
    sizes=[10,20,30,30,20,10]
    colors=["red","blue","green","pink","violet","gray"]
    #sizes=25 #所有点相同大小
    #colors="red" #所有点相同颜色
    p.circle(listx, listy, size=sizes, color=colors, alpha=0.5)
    show(p)

    from bokeh.plotting import figure, show
    import matplotlib.pyplot as plt #导入绘图模块,重命名为plt
    import requests #导入网页内容抓取包
    from bs4 import BeautifulSoup as bs #导入网页解析模块,重命名为bs

    year = [] #横坐标列表
    gdp = [] #纵坐标列表
    url = "http://value500.com/M2GDP.html" #设置要在哪个网页抓数据
    content = requests.get(url) #获取网页内容
    content.encoding='utf-8' #转为utf-8编码
    content1=content.text #取得网页内容的text部分
    parse = bs(content1,"html.parser") #进行html解析
    data1 = parse.find_all("table") #获取所有表元素
    rows = data1[19].find_all("tr") #取出包含所需数据的表(网页第20个表)
    i=0 #为了不读取表头数据,设置此控制变量
    for row in rows:
    cols = row.find_all("td") #把每一行表数据存入cols变量
    if(len(cols) > 0 and i==0): #如果是第一行,则控制变量加1
    i+=1
    else: #如果不是第一行,则写入绘图列表
    year.append(cols[0].text[:-2]) #取得年份数据(数据的最后两个字符不是数据需去除)并写入图形的year轴
    gdp.append(cols[2].text) #把gdp值存入gdp轴

    p = figure(width=800, height=400, title="1990~2016年度我国GDP") #在浏览器生成画图区域
    p.title_text_font_size = "20pt" #设置字体大小为20
    p.xaxis.axis_label = "年度" #设置x轴标题
    p.yaxis.axis_label = "GDP(亿元)" #设置y轴标题
    p.circle(year,gdp, size=6) # 圆点显示,点的大小为6
    show(p) #显示图形

  • 相关阅读:
    SilverLight学习篇——框架搭建及实例讲述(huangyezi)
    MVVMLight学习
    MVVMLight学习篇——WPF MVVMLightToolkit(李凤桐)
    MvvmLight学习篇—— Mvvm Light Toolkit for wpf/silverlight系列(子林)
    Erro:Namespace http://schemas.microsoft.com/expression/blend/2008 is not resolved.
    MEF学习篇——MEF程序设计指南(Bēniaǒ)
    Error:The tag 'Label' does not exist in XML namespace 'http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk'.
    silverlight页面间常用跳转模式
    UIViewController的生命周期以及相互之间通信
    解析:如何快速掌握SQL Server的锁机制
  • 原文地址:https://www.cnblogs.com/tszr/p/10061290.html
Copyright © 2020-2023  润新知