• spark(1.1) mllib 源码分析(一)-卡方检验


    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4019131.html

    在spark mllib 1.1版本中增加stat包,里面包含了一些统计相关的函数,本文主要分析其中的卡方检验的原理与实现:

    一、基本原理

      在stat包中实现了皮尔逊卡方检验,它主要包含以下两类

        (1)适配度检验(Goodness of Fit test):验证一组观察值的次数分配是否异于理论上的分配。

        (2)独立性检验(independence test) :验证从两个变量抽出的配对观察值组是否互相独立(例如:每次都从A国和B国各抽一个人,看他们的反应是否与国籍无关)

      计算公式:

     chi^2 =   sum_{i=1}^{r} sum_{j=1}^{c} {(O_{i,j} - E_{i,j})^2 over E_{i,j}}.

        其中O表示观测值,E表示期望值

      详细原理可以参考:http://zh.wikipedia.org/wiki/%E7%9A%AE%E7%88%BE%E6%A3%AE%E5%8D%A1%E6%96%B9%E6%AA%A2%E5%AE%9A

    二、java api调用example

      https://github.com/tovin-xu/mllib_example/blob/master/src/main/java/com/mllib/example/stat/ChiSquaredSuite.java

    三、源码分析

      1、外部api

        通过Statistics类提供了4个外部接口  

    // Goodness of Fit test
    def chiSqTest(observed: Vector, expected: Vector): ChiSqTestResult = {
        ChiSqTest.chiSquared(observed, expected)
      }
    //Goodness of Fit test
    def chiSqTest(observed: Vector): ChiSqTestResult = ChiSqTest.chiSquared(observed)
    
    //independence test
    def chiSqTest(observed: Matrix): ChiSqTestResult = ChiSqTest.chiSquaredMatrix(observed)
    //independence test
    def chiSqTest(data: RDD[LabeledPoint]): Array[ChiSqTestResult] = {
        ChiSqTest.chiSquaredFeatures(data)
    }

      2、Goodness of Fit test实现

      这个比较简单,关键是根据(observed-expected)2/expected计算卡方值

     /*
       * Pearon's goodness of fit test on the input observed and expected counts/relative frequencies.
       * Uniform distribution is assumed when `expected` is not passed in.
       */
      def chiSquared(observed: Vector,
          expected: Vector = Vectors.dense(Array[Double]()),
          methodName: String = PEARSON.name): ChiSqTestResult = {
    
        // Validate input arguments
        val method = methodFromString(methodName)
        if (expected.size != 0 && observed.size != expected.size) {
          throw new IllegalArgumentException("observed and expected must be of the same size.")
        }
        val size = observed.size
        if (size > 1000) {
          logWarning("Chi-squared approximation may not be accurate due to low expected frequencies "
            + s" as a result of a large number of categories: $size.")
        }
        val obsArr = observed.toArray
      // 如果expected值没有设置,默认取1.0 / size val expArr
    = if (expected.size == 0) Array.tabulate(size)(_ => 1.0 / size) else expected.toArray

      / 如果expected、observed值都必须要大于1
    if (!obsArr.forall(_ >= 0.0)) { throw new IllegalArgumentException("Negative entries disallowed in the observed vector.") } if (expected.size != 0 && ! expArr.forall(_ >= 0.0)) { throw new IllegalArgumentException("Negative entries disallowed in the expected vector.") } // Determine the scaling factor for expected val obsSum = obsArr.sum val expSum = if (expected.size == 0.0) 1.0 else expArr.sum val scale = if (math.abs(obsSum - expSum) < 1e-7) 1.0 else obsSum / expSum // compute chi-squared statistic val statistic = obsArr.zip(expArr).foldLeft(0.0) { case (stat, (obs, exp)) => if (exp == 0.0) { if (obs == 0.0) { throw new IllegalArgumentException("Chi-squared statistic undefined for input vectors due" + " to 0.0 values in both observed and expected.") } else { return new ChiSqTestResult(0.0, size - 1, Double.PositiveInfinity, PEARSON.name, NullHypothesis.goodnessOfFit.toString) } }
      //
    计算(observed-expected)2/expected if (scale == 1.0) { stat + method.chiSqFunc(obs, exp) } else { stat + method.chiSqFunc(obs, exp * scale) } } val df = size - 1 val pValue = chiSquareComplemented(df, statistic) new ChiSqTestResult(pValue, df, statistic, PEARSON.name, NullHypothesis.goodnessOfFit.toString) }

      3、independence test实现

        先通过下面的公式计算expected值,矩阵共有 r 行 c 列

         E_{i,j}=frac{left(sum_{n_c=1}^c O_{i,n_c}
ight) cdotleft(sum_{n_r=1}^r O_{n_r,j}
ight)}{N}

        然后根据(observed-expected)2/expected计算卡方值

    /*
       * Pearon's independence test on the input contingency matrix.
       * TODO: optimize for SparseMatrix when it becomes supported.
       */
      def chiSquaredMatrix(counts: Matrix, methodName:String = PEARSON.name): ChiSqTestResult = {
        val method = methodFromString(methodName)
        val numRows = counts.numRows
        val numCols = counts.numCols
    
        // get row and column sums
        val colSums = new Array[Double](numCols)
        val rowSums = new Array[Double](numRows)
        val colMajorArr = counts.toArray
        var i = 0
        while (i < colMajorArr.size) {
          val elem = colMajorArr(i)
          if (elem < 0.0) {
            throw new IllegalArgumentException("Contingency table cannot contain negative entries.")
          }
          colSums(i / numRows) += elem
          rowSums(i % numRows) += elem
          i += 1
        }
        val total = colSums.sum
    
        // second pass to collect statistic
        var statistic = 0.0
        var j = 0
        while (j < colMajorArr.size) {
          val col = j / numRows
          val colSum = colSums(col)
          if (colSum == 0.0) {
            throw new IllegalArgumentException("Chi-squared statistic undefined for input matrix due to"
              + s"0 sum in column [$col].")
          }
          val row = j % numRows
          val rowSum = rowSums(row)
          if (rowSum == 0.0) {
            throw new IllegalArgumentException("Chi-squared statistic undefined for input matrix due to"
              + s"0 sum in row [$row].")
          }
          val expected = colSum * rowSum / total
          statistic += method.chiSqFunc(colMajorArr(j), expected)
          j += 1
        }
        val df = (numCols - 1) * (numRows - 1)
        val pValue = chiSquareComplemented(df, statistic)
        new ChiSqTestResult(pValue, df, statistic, methodName, NullHypothesis.independence.toString)
      }

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4019131.html

  • 相关阅读:
    Microsoft Updateclient更新
    DataTables warning: table id=dataTable
    BCB使用线程删除目录中的图片
    grep常见使用方法总结
    实战:percona-xtrabackup 2.1.9 for mysql 5.6.19
    代理模式之cglib动态代理
    hello world to php( mac 配置 xmapp virtual host)
    Android开发之AlarmManager具体解释
    linux入门教程(六) Linux文件与目录管理
    linux入门教程(五) Linux系统的远程登录
  • 原文地址:https://www.cnblogs.com/tovin/p/4019131.html
Copyright © 2020-2023  润新知