• Deep learning:四十九(RNN-RBM简单理解)


      前言:

      本文主要是bengio的deep learning tutorial教程主页中最后一个sample:rnn-rbm in polyphonic music. 即用RNN-RBM来model复调音乐,训练过程中采用的是midi格式的音频文件,接着用建好的model来产生复调音乐。对音乐建模的难点在与每首乐曲中帧间是高度时间相关的(这样样本的维度会很高),用普通的网络模型是不能搞定的(普通设计网络模型没有考虑时间维度,图模型中的HMM有这方面的能力),这种情况下可以采用RNN来处理,这里的RNN为recurrent neural network中文为循环神经网络,另外还有一种RNN为recursive neural network翻为递归神经网络。本文中指的是循环神经网络。

      RNN简单介绍:

      首先来看RNN和普通的feed-forward网络有什么不同。RNN的网络框架如下:

       

      由结构图可以知道,RNN和feed-forward相比只是中间隐含层多了一个循环的圈而已,这个圈表示上一次隐含层的输出作为这一次隐含层的输入,当然此时的输入是需要乘以一个权值矩阵的,这样的话RNN模型参数只多了个权值矩阵。更形象的RNN图可以参考:

       

      以及图:

       

      按照上图所示,可知道RNN网络前向传播过程中满足下面的公式(参考文献Learning Recurrent Neural Networks with Hessian-Free Optimization):

       

      其代价函数可以是重构的误差:

       

      也可以是交叉熵:

       

      相信熟悉普通深究网络的同学看懂这些应该不难。

      RNN-RBM简单介绍:

      RNN-RBM来自ICML2012的论文:Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription,它由一个单层的RBM网络和单层的RNN网络构成,且由RNN网络的输出作为最终网络的输出。RBM部分当生成模型的功能,比如这里的音乐生成,RNN部分当判别模型作用,比如它的输出当值可当做提取的特征。RNN-RBM模型的结构如下:

       

      模型上面是RBM部分,下面是RNN部分,对应的公式可以参考论文。模型中一共有9个参数:

       

      整个模型的代价函数为-P(v),其中:

       

      

      对该loss function求导,然后采用SGD算法就可以求出模型中的各个参数了。当然了,其中的RBM部分还需要用Gibbs采样完成CD-k算法。

      实验结果:

      实验部分参考http://deeplearning.net/tutorial/rnnrbm.html,实验须用的数据和paper对应的见http://www-etud.iro.umontreal.ca/~boulanni/icml2012. 由于本人对乐理方面的知识不是很懂,很多实验代码细节没有去深究,只是看下算法的大概流程。由RNN-RBM生成的两个pinao roll数据如下(程序跑了20个小时左右): 

       

      迭代200次后的cost为:

    ......
    Epoch 197/200 -4.7050858655
    Epoch 198/200 -4.69198161366
    Epoch 199/200 -4.66586797348
    Epoch 200/200 -4.68651185036

      代码如下:   

    # Author: Nicolas Boulanger-Lewandowski
    # University of Montreal (2012)
    # RNN-RBM deep learning tutorial
    # More information at http://deeplearning.net/tutorial/rnnrbm.html
    
    import glob
    import os
    import sys
    
    import numpy
    try:
        import pylab
    except ImportError:
        print "pylab isn't available, if you use their fonctionality, it will crash"
        print "It can be installed with 'pip install -q Pillow'"
    
    from midi.utils import midiread, midiwrite
    import theano
    import theano.tensor as T
    from theano.tensor.shared_randomstreams import RandomStreams
    
    #Don't use a python long as this don't work on 32 bits computers.
    numpy.random.seed(0xbeef)
    rng = RandomStreams(seed=numpy.random.randint(1 << 30))
    theano.config.warn.subtensor_merge_bug = False
    
    
    #给定rbm的3个参数w,bv,bh,输入端数据v,以及gibbs采用长度k
    #返回的tuple元素依次是:v_samples(k次gibbs采用得到的输入端数据,01化后的),cost(rbm模型中的-log(v)),monitor(监控用变量),
    #updates(保留每次迭代的中间过程,如果是shared变量的话)
    def build_rbm(v, W, bv, bh, k):
        '''Construct a k-step Gibbs chain starting at v for an RBM.
    
    v : Theano vector or matrix
      If a matrix, multiple chains will be run in parallel (batch).
    W : Theano matrix
      Weight matrix of the RBM.
    bv : Theano vector
      Visible bias vector of the RBM.
    bh : Theano vector
      Hidden bias vector of the RBM.
    k : scalar or Theano scalar
      Length of the Gibbs chain.
    
    Return a (v_sample, cost, monitor, updates) tuple:
    
    v_sample : Theano vector or matrix with the same shape as `v`
      Corresponds to the generated sample(s).
    cost : Theano scalar
      Expression whose gradient with respect to W, bv, bh is the CD-k approximation
      to the log-likelihood of `v` (training example) under the RBM.
      The cost is averaged in the batch case.
    monitor: Theano scalar
      Pseudo log-likelihood (also averaged in the batch case).
    updates: dictionary of Theano variable -> Theano variable
      The `updates` object returned by scan.'''
    
        def gibbs_step(v): #该函数功能是一次gibbs采样后得到的mean_v,v
            mean_h = T.nnet.sigmoid(T.dot(v, W) + bh)
            h = rng.binomial(size=mean_h.shape, n=1, p=mean_h, #产生二项分布,隐含层节点01化
                             dtype=theano.config.floatX)
            mean_v = T.nnet.sigmoid(T.dot(h, W.T) + bv)
            v = rng.binomial(size=mean_v.shape, n=1, p=mean_v, #反向传播,输入层节点也01化
                             dtype=theano.config.floatX)
            return mean_v, v #一次Gibbs采样后输入层01化前后的值
        #输入的是v,输出的是每一次Gibbs采样后的v构成的list,一共进行k次Gibbs采样
        chain, updates = theano.scan(lambda v: gibbs_step(v)[1], outputs_info=[v], 
                                     n_steps=k) #updates里面装的是每次的输入值
        v_sample = chain[-1] #k次Gibbs采样后输入端的值(01化过后的)
    
        mean_v = gibbs_step(v_sample)[0] #再次Gibbs前进一次,得到没有01化的输入端数码,用于监控的变量
        monitor = T.xlogx.xlogy0(v, mean_v) + T.xlogx.xlogy0(1 - v, 1 - mean_v)
        monitor = monitor.sum() / v.shape[0]
    
        def free_energy(v): #公式4,能量的计算公式
            return -(v * bv).sum() - T.log(1 + T.exp(T.dot(v, W) + bh)).sum()
        cost = (free_energy(v) - free_energy(v_sample)) / v.shape[0] #代价函数
    
        return v_sample, cost, monitor, updates
    
    
    def shared_normal(num_rows, num_cols, scale=1):
        '''Initialize a matrix shared variable with normally distributed
    elements.'''
        return theano.shared(numpy.random.normal(
            scale=scale, size=(num_rows, num_cols)).astype(theano.config.floatX))
    
    
    def shared_zeros(*shape):
        '''Initialize a vector shared variable with zero elements.'''
        return theano.shared(numpy.zeros(shape, dtype=theano.config.floatX))
    
    
    def build_rnnrbm(n_visible, n_hidden, n_hidden_recurrent):
        '''Construct a symbolic RNN-RBM and initialize parameters.
    
    n_visible : integer
      Number of visible units.
    n_hidden : integer
      Number of hidden units of the conditional RBMs.
    n_hidden_recurrent : integer
      Number of hidden units of the RNN.
    
    Return a (v, v_sample, cost, monitor, params, updates_train, v_t,
              updates_generate) tuple:
    
    v : Theano matrix
      Symbolic variable holding an input sequence (used during training)
    v_sample : Theano matrix
      Symbolic variable holding the negative particles for CD log-likelihood
      gradient estimation (used during training)
    cost : Theano scalar
      Expression whose gradient (considering v_sample constant) corresponds to the
      LL gradient of the RNN-RBM (used during training)
    monitor : Theano scalar
      Frame-level pseudo-likelihood (useful for monitoring during training)
    params : tuple of Theano shared variables
      The parameters of the model to be optimized during training.
    updates_train : dictionary of Theano variable -> Theano variable
      Update object that should be passed to theano.function when compiling the
      training function.
      v_t : Theano matrix
      Symbolic variable holding a generated sequence (used during sampling)
    updates_generate : dictionary of Theano variable -> Theano variable
      Update object that should be passed to theano.function when compiling the
      generation function.'''
    
        W = shared_normal(n_visible, n_hidden, 0.01)
        bv = shared_zeros(n_visible)
        bh = shared_zeros(n_hidden)
        Wuh = shared_normal(n_hidden_recurrent, n_hidden, 0.0001)
        Wuv = shared_normal(n_hidden_recurrent, n_visible, 0.0001)
        Wvu = shared_normal(n_visible, n_hidden_recurrent, 0.0001)
        Wuu = shared_normal(n_hidden_recurrent, n_hidden_recurrent, 0.0001)
        bu = shared_zeros(n_hidden_recurrent)
    
        params = W, bv, bh, Wuh, Wuv, Wvu, Wuu, bu  # learned parameters as shared
                                                    # variables
    
        v = T.matrix()  # a training sequence
        u0 = T.zeros((n_hidden_recurrent,))  # initial value for the RNN hidden
                                             # units
    
        # If `v_t` is given, deterministic recurrence to compute the variable
        # biases bv_t, bh_t at each time step. If `v_t` is None, same recurrence
        # but with a separate Gibbs chain at each time step to sample (generate)
        # from the RNN-RBM. The resulting sample v_t is returned in order to be
        # passed down to the sequence history.
        # 如果给定t时刻的v和t-1时刻的u,那么返回t时刻的u,bv,bh,含有25次Gibbs采样过程
        # 如果只给定t-1时刻的u(即没有t时刻的v),则表示的是由rbm来产生v了,所以这时候返回的是t时刻的v和u,以及
        # 迭代过程中输入端的变换过程updates
        def recurrence(v_t, u_tm1):
            bv_t = bv + T.dot(u_tm1, Wuv)
            bh_t = bh + T.dot(u_tm1, Wuh)
            generate = v_t is None
            if generate:
                v_t, _, _, updates = build_rbm(T.zeros((n_visible,)), W, bv_t, #第一个参数应该是v,因此这里的v是0
                                               bh_t, k=25)
            u_t = T.tanh(bu + T.dot(v_t, Wvu) + T.dot(u_tm1, Wuu))
            return ([v_t, u_t], updates) if generate else [u_t, bv_t, bh_t]
    
        # For training, the deterministic recurrence is used to compute all the
        # {bv_t, bh_t, 1 <= t <= T} given v. Conditional RBMs can then be trained
        # in batches using those parameters.
        (u_t, bv_t, bh_t), updates_train = theano.scan( #训练rbm过程的符号表达式(每次只包括25步的Gibbs采样)
            lambda v_t, u_tm1, *_: recurrence(v_t, u_tm1),
            sequences=v, outputs_info=[u0, None, None], non_sequences=params)
        v_sample, cost, monitor, updates_rbm = build_rbm(v, W, bv_t[:], bh_t[:],
                                                         k=15)
        updates_train.update(updates_rbm)
    
        # symbolic loop for sequence generation
        (v_t, u_t), updates_generate = theano.scan(
            lambda u_tm1, *_: recurrence(None, u_tm1),#进行generate产生过程的符号表达式,迭代200次
            outputs_info=[None, u0], non_sequences=params, n_steps=200)
    
        return (v, v_sample, cost, monitor, params, updates_train, v_t, #cost在build_rbm()中产生
                updates_generate)
    
    
    class RnnRbm: #两个功能,训练RNN-RBM模型和用训练好的RNN-RBM模型来产生样本
        '''Simple class to train an RNN-RBM from MIDI files and to generate sample
    sequences.'''
    
        def __init__(self, n_hidden=150, n_hidden_recurrent=100, lr=0.001, 
                     r=(21, 109), dt=0.3):
            '''Constructs and compiles Theano functions for training and sequence
    generation.
    
    n_hidden : integer
      Number of hidden units of the conditional RBMs.
    n_hidden_recurrent : integer
      Number of hidden units of the RNN.
    lr : float
      Learning rate
    r : (integer, integer) tuple
      Specifies the pitch range of the piano-roll in MIDI note numbers, including
      r[0] but not r[1], such that r[1]-r[0] is the number of visible units of the
      RBM at a given time step. The default (21, 109) corresponds to the full range
      of piano (88 notes).
    dt : float
      Sampling period when converting the MIDI files into piano-rolls, or
      equivalently the time difference between consecutive time steps.'''
    
            self.r = r
            self.dt = dt
            (v, v_sample, cost, monitor, params, updates_train, v_t,
             updates_generate) = build_rnnrbm(r[1] - r[0], n_hidden, #在该函数里面有设置迭代次数等参数
                                               n_hidden_recurrent)
    
            gradient = T.grad(cost, params, consider_constant=[v_sample])
            updates_train.update(((p, p - lr * g) for p, g in zip(params,
                                                                    gradient))) #sgd算法,利用公式4的cost公式搞定8个参数的更新
            self.train_function = theano.function([v], monitor,
                                                   updates=updates_train)
            self.generate_function = theano.function([], v_t, #updates_generate步骤在build_rnnrbm()中产生,音乐的产生主要在那函数中
                                                     updates=updates_generate)
    
        def train(self, files, batch_size=100, num_epochs=200):
            '''Train the RNN-RBM via stochastic gradient descent (SGD) using MIDI
    files converted to piano-rolls.
    
    files : list of strings
      List of MIDI files that will be loaded as piano-rolls for training.
    batch_size : integer
      Training sequences will be split into subsequences of at most this size
      before applying the SGD updates.
    num_epochs : integer
      Number of epochs (pass over the training set) performed. The user can
      safely interrupt training with Ctrl+C at any time.'''
    
            assert len(files) > 0, 'Training set is empty!' 
                                   ' (did you download the data files?)'
            dataset = [midiread(f, self.r,
                                self.dt).piano_roll.astype(theano.config.floatX)
                       for f in files] #读取midi文件
    
            try:
                for epoch in xrange(num_epochs): #训练200次
                    numpy.random.shuffle(dataset) #将训练样本打乱
                    costs = []
    
                    for s, sequence in enumerate(dataset): #返回的s是序号,sequence是dataset对应序号下的值
                        for i in xrange(0, len(sequence), batch_size):
                            cost = self.train_function(sequence[i:i + batch_size]) #train_function在init()函数中
                            costs.append(cost)
    
                    print 'Epoch %i/%i' % (epoch + 1, num_epochs),
                    print numpy.mean(costs) 
                    sys.stdout.flush()
    
            except KeyboardInterrupt:
                print 'Interrupted by user.'
    
        def generate(self, filename, show=True):
            '''Generate a sample sequence, plot the resulting piano-roll and save
    it as a MIDI file.
    
    filename : string
      A MIDI file will be created at this location.
    show : boolean
      If True, a piano-roll of the generated sequence will be shown.'''
    
            piano_roll = self.generate_function() #直接生成piano roll文件
            midiwrite(filename, piano_roll, self.r, self.dt)#将piano_roll文件转换成midi文件并保存
            if show:
                extent = (0, self.dt * len(piano_roll)) + self.r
                pylab.figure()
                pylab.imshow(piano_roll.T, origin='lower', aspect='auto',
                             interpolation='nearest', cmap=pylab.cm.gray_r,
                             extent=extent)
                pylab.xlabel('time (s)')
                pylab.ylabel('MIDI note number')
                pylab.title('generated piano-roll')
    
    
    def test_rnnrbm(batch_size=100, num_epochs=200):
        model = RnnRbm()
        #os.path.dirname(__file__)为获得当前文件的目录,os.path.split(path)是将path按照最后一个斜线分成父和子的部分
        re = os.path.join(os.path.split(os.path.dirname(__file__))[0], #该代码完成的功能是,找到当前文件的上级目录下的/data/Nottinghan/train/*.mid文件
                          'data', 'Nottingham', 'train', '*.mid') #re得到该目录下的所有.mid文件
        model.train(glob.glob(re),#glob.glob()只是将文件路径名等弄成linux的格式
                    batch_size=batch_size, num_epochs=num_epochs)
        return model
    
    if __name__ == '__main__':
        model = test_rnnrbm() #该函数主要用来训练RNN-RBM参数
        model.generate('sample1.mid') #产生数据的v_t初始化都是0
        model.generate('sample2.mid')
        pylab.show()

      实验总结:

      关于bp算法:由于RNN-RBM中对loss函数求导用到了BPTT(back propgation through time)算法:BP算法加入了时间维度。为了加深对BP算法的理解,重新看了一遍推导过程。bp算法的推导过程是主要是由求导中的链式法则得到的。具体算法可参考Martin T.Hagan 的《神经网络设计》第11章(这本书写得不错,翻译得也还可以)。其思想大概为:损失函数F对第m层wij(连接第m层第i个节点和第m-1层第j个节点之间的权值)的导数等于F对第m层第i个节点输入值的导数,乘上该输入值对wij的导数(很容易知道这个导数等于第m-1层第j个节点的输出值)。而F对第m层第i个节点输入值的导数值又等于F对第m+1层输入值的导数(这时需要考虑第m+1中所有的节点)乘以第m+1层输入值对第m层第i个输入值的导数(这个导数值很容易由激发函数的导函数求得),并且我们通常说的bp算法是误差方向传播,这里的第m层误差指的就是F对第m层输入值的导数。由此可知,可以从最后一层依次往前求解,这就是bp算法的思想,本质上是高数里面的链式求导法则。

          另外,实验中关于乐理对应的具体细节没有深究。

      参考资料:

           http://deeplearning.net/tutorial/rnnrbm.html(教程主页)

         《神经网络设计》,Martin T.Hagan.

           http://www.cse.unsw.edu.au/~waleed/phd/html/node37.html(RNN图片来源1)

           Recurrent Neural Networks in Ruby.(RNN图片来源2)

      Learning Recurrent Neural Networks with Hessian-Free Optimization, James Martens,Ilya Sutskever.

      Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription, Nicolas Boulanger-Lewandowski,Yoshua Bengio,Pascal Vincent.

           http://www-etud.iro.umontreal.ca/~boulanni/icml2012(rnn-rbm项目主页)

  • 相关阅读:
    回测框架pybacktest简介(二)
    量化分析:把Tushare数据源,规整成PyalgoTrade所需格式
    CtaAlgo vs PyAlgoTrade
    Yahoo! Finance财经数据PYTHON临时读取方法
    linux screen 命令详解(转载)
    linux screen 命令详解
    centos7 安装mysql--python模块出现EnvironmentError: mysql_config not found和error: command 'gcc' failed with exit status 1
    redis安装全过程
    (转)ZooKeeper-3.3.4集群安装配置
    windows下 两个版本的JDK环境变量进行切换 MARK
  • 原文地址:https://www.cnblogs.com/tornadomeet/p/3439503.html
Copyright © 2020-2023  润新知