• Deep learning:二十二(linear decoder练习)


      前言:

      本节是练习Linear decoder的应用,关于Linear decoder的相关知识介绍请参考:Deep learning:十七(Linear DecodersConvolutionPooling),实验步骤参考Exercise: Implement deep networks for digit classification。本次实验是用linear decoder的sparse autoencoder来训练出stl-10数据库图片的patch特征。并且这次的训练权值是针对rgb图像块的。

      基础知识:

      PCA Whitening是保证数据各维度的方差为1,而ZCA Whitening是保证数据各维度的方差相等即可,不一定要唯一。并且这两种whitening的一般用途也不一样,PCA Whitening主要用于降维且去相关性,而ZCA Whitening主要用于去相关性,且尽量保持原数据。

      Matlab的一些知识:

      函数句柄的好处就是把一个函数作为参数传入到本函数中,在该函数内部可以利用该函数进行各种运算得出最后需要的结果,比如说函数中要用到各种求导求积分的方法,如果是传入该函数经过各种运算后的值的话,那么在调用该函数前就需要不少代码,这样比较累赘,所以采用函数句柄后这些代码直接放在了函数内部,每调用一次无需在函数外面实现那么多的东西。

      Matlab中保存各种数据时可以采用save函数,并将其保持为.mat格式的,这样在matlab的current folder中看到的是.mat格式的文件,但是直接在文件夹下看,它是不直接显示后缀的,且显示的是Microsoft Access Table Shortcut,也就是.mat的简称。

      关于实验的一些说明:

      在Ng的教程和实验中,它的输入样本矩阵是每一列代表一个样本的,列数为样本的总个数。

      matlab中矩阵64*10w大小肯定是可以的。

      在本次实验中,ZCA Whitening是针对patches进行的,且patches的均值化是对每一维进行的(感觉这种均值化比较靠谱,前面有文章是进行对patch中一个样本求均值,感觉那样很不靠谱,不过那是在natural image中做的,因为natural image每一维的统计特性都一样,所以可以那样均值化,但还是感觉不太靠谱)。因为使用的是ZCA whitening,所以新的向量并没有进行降维,只是去了相关性和让每一维的方差都相等而已。另外,由此可见,在进行数据Whitening时并不需要对原始的大图片进行whitening,而是你用什么数据输入网络去训练就对什么数据进行whitening,而这里,是用的小patches来训练的,所以应该对小patches进行whitening。

      关于本次实验的一些数据和变量分配如下:

      总共需训练的样本矩阵大小为192*100000。因为输入训练的一个patch大小为8*8的,所以网络的输入层节点数为192(=8*8*3,因为是3通道的,每一列按照rgb的顺序排列),另外本次试验的隐含层个数为400,权值惩罚系数为0.003,稀疏性惩罚系数为5,稀疏性体现在3.5%的隐含层节点被激发。ZCA白化时分母加上0.1的值防止出现大的数值。

      用的是Linear decoder,所以最后的输出层的激发函数为1,即输出和输入相等。这样在问题内部的计算量变小了点。

      程序中最后需要把学习到的网络权值给显示出来,不过这个显示的内容已经包括了whitening部分了,所以是whitening和sparse autoencoder的组合。程序中显示用的是displayColorNetwork( (W*ZCAWhite)');

      这里为什么要用(W*ZCAWhite)'呢?首先,使用W*ZCAWhite是因为每个样本x输入网络,其输出等价于W*ZCAWhite*x;另外,由于W*ZCAWhite的每一行才是一个隐含节点的变换值,而displayColorNetwork函数是把每一列显示一个小图像块的,所以需要对其转置。

      实验结果:

      原始图片截图:

       

      ZCA Whitening后截图;

       

      学习到的400个特征显示如下:

       

      实验主要部分代码:

    %% CS294A/CS294W Linear Decoder Exercise
    
    %  Instructions
    %  ------------
    % 
    %  This file contains code that helps you get started on the
    %  linear decoder exericse. For this exercise, you will only need to modify
    %  the code in sparseAutoencoderLinearCost.m. You will not need to modify
    %  any code in this file.
    
    %%======================================================================
    %% STEP 0: Initialization
    %  Here we initialize some parameters used for the exercise.
    
    imageChannels = 3;     % number of channels (rgb, so 3)
    
    patchDim   = 8;          % patch dimension
    numPatches = 100000;   % number of patches
    
    visibleSize = patchDim * patchDim * imageChannels;  % number of input units 
    outputSize  = visibleSize;   % number of output units
    hiddenSize  = 400;           % number of hidden units %中间的隐含层还变多了
    
    sparsityParam = 0.035; % desired average activation of the hidden units.
    lambda = 3e-3;         % weight decay parameter       
    beta = 5;              % weight of sparsity penalty term       
    
    epsilon = 0.1;           % epsilon for ZCA whitening
    
    %%======================================================================
    %% STEP 1: Create and modify sparseAutoencoderLinearCost.m to use a linear decoder,
    %          and check gradients
    %  You should copy sparseAutoencoderCost.m from your earlier exercise 
    %  and rename it to sparseAutoencoderLinearCost.m. 
    %  Then you need to rename the function from sparseAutoencoderCost to
    %  sparseAutoencoderLinearCost, and modify it so that the sparse autoencoder
    %  uses a linear decoder instead. Once that is done, you should check 
    % your gradients to verify that they are correct.
    
    % NOTE: Modify sparseAutoencoderCost first!
    
    % To speed up gradient checking, we will use a reduced network and some
    % dummy patches
    
    debugHiddenSize = 5;
    debugvisibleSize = 8;
    patches = rand([8 10]);%随机产生10个样本,每个样本为一个8维的列向量,元素值为0~1
    theta = initializeParameters(debugHiddenSize, debugvisibleSize); 
    
    [cost, grad] = sparseAutoencoderLinearCost(theta, debugvisibleSize, debugHiddenSize, ...
                                               lambda, sparsityParam, beta, ...
                                               patches);
    
    % Check gradients
    numGrad = computeNumericalGradient( @(x) sparseAutoencoderLinearCost(x, debugvisibleSize, debugHiddenSize, ...
                                                      lambda, sparsityParam, beta, ...
                                                      patches), theta);
    
    % Use this to visually compare the gradients side by side
    disp([numGrad cost]); 
    
    diff = norm(numGrad-grad)/norm(numGrad+grad);
    % Should be small. In our implementation, these values are usually less than 1e-9.
    disp(diff); 
    
    assert(diff < 1e-9, 'Difference too large. Check your gradient computation again');
    
    % NOTE: Once your gradients check out, you should run step 0 again to
    %       reinitialize the parameters
    %}
    
    %%======================================================================
    %% STEP 2: Learn features on small patches
    %  In this step, you will use your sparse autoencoder (which now uses a 
    %  linear decoder) to learn features on small patches sampled from related
    %  images.
    
    %% STEP 2a: Load patches
    %  In this step, we load 100k patches sampled from the STL10 dataset and
    %  visualize them. Note that these patches have been scaled to [0,1]
    
    load stlSampledPatches.mat
    
    displayColorNetwork(patches(:, 1:100));
    
    %% STEP 2b: Apply preprocessing
    %  In this sub-step, we preprocess the sampled patches, in particular, 
    %  ZCA whitening them. 
    % 
    %  In a later exercise on convolution and pooling, you will need to replicate 
    %  exactly the preprocessing steps you apply to these patches before 
    %  using the autoencoder to learn features on them. Hence, we will save the
    %  ZCA whitening and mean image matrices together with the learned features
    %  later on.
    
    % Subtract mean patch (hence zeroing the mean of the patches)
    meanPatch = mean(patches, 2);  %注意这里减掉的是每一维属性的均值,为什么会和其它的不同呢?
    patches = bsxfun(@minus, patches, meanPatch);%每一维都均值化
    
    % Apply ZCA whitening
    sigma = patches * patches' / numPatches;
    [u, s, v] = svd(sigma);
    ZCAWhite = u * diag(1 ./ sqrt(diag(s) + epsilon)) * u';%求出ZCAWhitening矩阵
    patches = ZCAWhite * patches;
    figure
    displayColorNetwork(patches(:, 1:100));
    
    %% STEP 2c: Learn features
    %  You will now use your sparse autoencoder (with linear decoder) to learn
    %  features on the preprocessed patches. This should take around 45 minutes.
    
    theta = initializeParameters(hiddenSize, visibleSize);
    
    % Use minFunc to minimize the function
    addpath minFunc/
    
    options = struct;
    options.Method = 'lbfgs'; 
    options.maxIter = 400;
    options.display = 'on';
    
    [optTheta, cost] = minFunc( @(p) sparseAutoencoderLinearCost(p, ...
                                       visibleSize, hiddenSize, ...
                                       lambda, sparsityParam, ...
                                       beta, patches), ...
                                  theta, options);%注意它的参数
    
    % Save the learned features and the preprocessing matrices for use in 
    % the later exercise on convolution and pooling
    fprintf('Saving learned features and preprocessing matrices...\n');                          
    save('STL10Features.mat', 'optTheta', 'ZCAWhite', 'meanPatch');
    fprintf('Saved\n');
    
    %% STEP 2d: Visualize learned features
    
    W = reshape(optTheta(1:visibleSize * hiddenSize), hiddenSize, visibleSize);
    b = optTheta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
    figure;
    %这里为什么要用(W*ZCAWhite)'呢?首先,使用W*ZCAWhite是因为每个样本x输入网络,
    %其输出等价于W*ZCAWhite*x;另外,由于W*ZCAWhite的每一行才是一个隐含节点的变换值
    %而displayColorNetwork函数是把每一列显示一个小图像块的,所以需要对其转置。
    displayColorNetwork( (W*ZCAWhite)');

     sparseAutoencoderLinearCost.m:

    function [cost,grad] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ...
                                                                lambda, sparsityParam, beta, data)
    % -------------------- YOUR CODE HERE --------------------
    % Instructions:
    %   Copy sparseAutoencoderCost in sparseAutoencoderCost.m from your
    %   earlier exercise onto this file, renaming the function to
    %   sparseAutoencoderLinearCost, and changing the autoencoder to use a
    %   linear decoder.
    % -------------------- YOUR CODE HERE --------------------                                    
    % The input theta is a vector because minFunc only deal with vectors. In
    % this step, we will convert theta to matrix format such that they follow
    % the notation in the lecture notes.
    W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
    W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
    b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
    b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);
    
    % Loss and gradient variables (your code needs to compute these values)
    m = size(data, 2);%样本点的个数
    
    %% ---------- YOUR CODE HERE --------------------------------------
    %  Instructions: Compute the loss for the Sparse Autoencoder and gradients
    %                W1grad, W2grad, b1grad, b2grad
    %
    %  Hint: 1) data(:,i) is the i-th example
    %        2) your computation of loss and gradients should match the size
    %        above for loss, W1grad, W2grad, b1grad, b2grad
    
    % z2 = W1 * x + b1
    % a2 = f(z2)
    % z3 = W2 * a2 + b2
    % h_Wb = a3 = f(z3)
    
    z2 = W1 * data + repmat(b1, [1, m]);
    a2 = sigmoid(z2);
    z3 = W2 * a2 + repmat(b2, [1, m]);
    a3 = z3;
    
    rhohats = mean(a2,2);
    rho = sparsityParam;
    KLsum = sum(rho * log(rho ./ rhohats) + (1-rho) * log((1-rho) ./ (1-rhohats)));
    
    
    squares = (a3 - data).^2;
    squared_err_J = (1/2) * (1/m) * sum(squares(:));
    weight_decay_J = (lambda/2) * (sum(W1(:).^2) + sum(W2(:).^2));
    sparsity_J = beta * KLsum;
    
    cost = squared_err_J + weight_decay_J + sparsity_J;%损失函数值
    
    % delta3 = -(data - a3) .* fprime(z3);
    % but fprime(z3) = a3 * (1-a3)
    delta3 = -(data - a3);
    beta_term = beta * (- rho ./ rhohats + (1-rho) ./ (1-rhohats));
    delta2 = ((W2' * delta3) + repmat(beta_term, [1,m]) ) .* a2 .* (1-a2);
    
    W2grad = (1/m) * delta3 * a2' + lambda * W2;
    b2grad = (1/m) * sum(delta3, 2);
    W1grad = (1/m) * delta2 * data' + lambda * W1;
    b1grad = (1/m) * sum(delta2, 2);
    
    %-------------------------------------------------------------------
    % Convert weights and bias gradients to a compressed form
    % This step will concatenate and flatten all your gradients to a vector
    % which can be used in the optimization method.
    grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];
    
    end
    %-------------------------------------------------------------------
    % We are giving you the sigmoid function, you may find this function
    % useful in your computation of the loss and the gradients.
    function sigm = sigmoid(x)
    
        sigm = 1 ./ (1 + exp(-x));
    end

      参考资料:

         Deep learning:十七(Linear DecodersConvolutionPooling)

         Exercise: Implement deep networks for digit classification

    作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。 (新浪微博:tornadomeet,欢迎交流!)
  • 相关阅读:
    【CentOS 7】关于php留言本网站的搭建
    linux系统的初化始配置(临时生效和永久生效)
    时间同步ntp服务的安装与配置(作为客户端的配置)
    CentOS 7设置服务的开机启动
    辅助模型——通信图
    一.面向对象概论
    辅助模型——包图
    构建图
    部署图
    辅助模型——状态机图
  • 原文地址:https://www.cnblogs.com/tornadomeet/p/3007435.html
Copyright © 2020-2023  润新知