Classic and challenging DP! And you need combine several tricks together with DP to make it 100% pass.
My main reference is here: https://github.com/havelessbemore/hackerrank/blob/master/algorithms/bit_manipulation/string-transmission.java
Basically it is a counting problem. It is easy to figure out that the possible count should be SUM(Cr(n, 0), Cr(n, 1),.. Cr(n, k)) without the limitation of "no periodic strings". And then we can count how many "periodic" strings there are. DP is useful here - two states: length of current substr, and number of corrupted bits -> DP[ending index][no. of corrupted bits]. We can go index by index. Grab this fact in your mind: periodic strings <=> all char[i + divisor * t] are identical, so in case there are different digits in [i, i + d, i + 2d ..], we can either flip 0s or 1s. Each flipping will increase the 2nd state: "number of corrupted bits". Since indexes are independent with each other, we can simply use "+" to advance in the DP.
Optimization: dp[len + 1] only depends on dp[len], we can use rolling-array. Oh another one, to get Cr(n, k), Pascal's Triangle is a good choice here.
#include <iostream> #include <string> #include <vector> #include <unordered_map> using namespace std; #define MAX_LEN 1001 #define MOD 1000000007 inline int mod(int num) { return (num % MOD + MOD) % MOD; } int main() { // Pascal's Triangle to compute Cr(n, k) vector<vector<int>> cr(MAX_LEN, vector<int>(MAX_LEN, 0)); cr[0][0] = 1; for(int i = 1; i < MAX_LEN; i ++) { cr[i][0] = 1; for (int j = 1; j <= i; j ++) cr[i][j] = mod(cr[i - 1][j - 1] + cr[i - 1][j]); } // int t; cin >> t; while (t--) { int n, k; cin >> n >> k; string str; cin >> str; int len = str.length(); // Original total: SUM(Cr(n, 0), Cr(n, 1), Cr(n, 2),.. Cr(n, k)) int ret = 0; for (int i = 0; i <= k; i ++) ret = mod(ret + cr[len][i]); // Get all divisors vector<int> divisor; for (int d = 1; d < len; d ++) if (len % d == 0) divisor.push_back(d); bool bSelfRepeated = false; // DP vector<vector<int>> dp(divisor.size(), vector<int>(MAX_LEN + k, 0)); // For each divisor.. for (int id = 0; id < divisor.size(); id ++) { int d = divisor[id]; /* * Original DP: * DP[substr_ending_index][corrupted bits no.] = no. of repeated string, where * DP[len + 1][cnt + zeroCnt] += DP[len][cnt] "For flipping 0s" * DP[len + 1][cnt + len / divisor - zeroCnt] += DP[len][cnt] "For flipping 1s" * * Idea is like this: for a repeated string [pattern]+, all terms above are for pattern only len is the ending substr index into pattern. We check index by index within this pattern. For each divisor-th sequence, (i, i + d, i + 2d..), we can simply flip the zeros in it to make chars at (i, i + d, i + 2d..) identical to all 1, and so does for flipping 1s (2nd equation above). Now, let's check DP state at index (i + 1). Say at index i (i + 1, i + 1 + d, i + 1 + 2d..), number of zeros is zeroCnt, then the cnt of dp[i + 1] can be built upon dp[i], for each of (0..k) of course Since each index is independent with each other, it is simply "+" upon the previous count. * * If you want to get 100% pass, you have to apply rolling array optimization, as below */ // DP Start dp[id][0] = 1; for (int j = 0; j < d; j ++) { // Counting ZEROs int zeroCnt = 0; for (int i = j; i < len; i += d) if(str[i] == '0') zeroCnt ++; vector<int> pre = dp[id]; std::fill(dp[id].begin(), dp[id].end(), 0); for (int i = 0; i <= k; i ++) { if (pre[i] > 0) { dp[id][i + zeroCnt] = mod(dp[id][i + zeroCnt] + pre[i]); // for flipping 0s dp[id][i + len/d - zeroCnt] = mod(dp[id][i + len/d - zeroCnt] + pre[i]); // for flipping 1s } } } if (dp[id][0] > 0) bSelfRepeated = true; // Avoid duplicated counting for (int pid = 0; pid < id; pid ++) if(d % divisor[pid] == 0) for(int i = 0; i <= k; i ++) dp[id][i] = mod(dp[id][i] - dp[pid][i]); // Repeated string number counting done. // Now removing no. of repeated pattern strings for(int i = 1; i <= k; i ++) ret = mod(ret - dp[id][i]); } // If input str itself is in repeated pattern.. if (bSelfRepeated) ret = mod (ret - 1); cout << ret << endl; }// while(t--) return 0; }