今日主要内容
1.递归函数
2.二分查找
今日主要对以上内容进行初步的了解.下面简单介绍:
递归函数
1)初识递归
什么是递归函数:
递归函数:在一个函数里在调用这个函数本身
递归的最大深度:998
正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去。但是我们之前已经说过关于函数调用的问题,每一次函数调用都会产生一个属于它自己的名称空间,如果一直调用下去,就会造成名称空间占用太多内存的问题,于是python为了杜绝此类现象,强制的将递归层数控制在了997(只要997!你买不了吃亏,买不了上当...).
拿什么来证明这个“998理论”呢?这里我们可以做一个实验:
由此我们可以看出,未报错之前能看到的最大数字就是998.当然了,997是python为了我们程序的内存优化所设定的一个默认值,我们当然还可以通过一些手段去修改它:
import sys print(sys.setrecursionlimit(100000))
递归示例讲解
现在你们问我,alex老师多大了?我说我不告诉你,但alex比 egon 大两岁。
你想知道alex多大,你是不是还得去问egon?egon说,我也不告诉你,但我比武sir大两岁。
你又问武sir,武sir也不告诉你,他说他比太白大两岁。
那你问太白,太白告诉你,他18了。
这个时候你是不是就知道了?alex多大?
1 | 金鑫 | 18 |
2 | 武sir | 20 |
3 | egon | 22 |
4 | alex | 24 |
你为什么能知道的?
首先,你是不是问alex的年龄,结果又找到egon、武sir、太白,你挨个儿问过去,一直到拿到一个确切的答案,然后顺着这条线再找回来,才得到最终alex的年龄。这个过程已经非常接近递归的思想。我们就来具体的我分析一下,这几个人之间的规律。
age(4) = age(3) + 2 age(3) = age(2) + 2 age(2) = age(1) + 2 age(1) = 40
那这样的情况,我们的函数怎么写呢?
def age(n): if n == 1: return 40 else: return age(n-1)+2 print(age(4))
二分查找法
举例说明:
l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]
你观察这个列表,这是不是一个从小到大排序的有序列表呀?
如果这样,假如我要找的数比列表中间的数还大,是不是我直接在列表的后半边找就行了?
这就是二分查找算法!
那么落实到代码上我们应该怎么实现呢?
简单版二分法
l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88] def func(l,aim): mid = (len(l)-1)//2 if l: if aim > l[mid]: func(l[mid+1:],aim) elif aim < l[mid]: func(l[:mid],aim) elif aim == l[mid]: print("bingo",mid) else: print('找不到') func(l,66) func(l,6)
升级版二分法
def search(num,l,start=None,end=None): start = start if start else 0 end = end if end else len(l) - 1 mid = (end - start)//2 + start if start > end: return None elif l[mid] > num : return search(num,l,start,mid-1) elif l[mid] < num: return search(num,l,mid+1,end) elif l[mid] == num: return mid