• RL实践1——动态规划值迭代


    RL实践1——值迭代求解随机策略

    参考自叶强《强化学习》第三讲,方格世界—— 使用 动态规划 求解随机策略

    动态规划的使用条件时MDP已知,在简单游戏中,这个条件时显然成立的
    使用Value iteration的方法求解每个状态的价值函数,迭代收敛之后,对应最优策略生成。

    注意:动态规划和强化学习都用的价值函数,区别在于

    • 动态规划需要基于模型获取采取动作后下一时刻的状态,已进行评估,需要MDP模型已知;
    • 强化学习无模型的学习方法,可以基于采样,对episode的状态(动作)价值函数进行学习。

    问题定义


    从方格状态走到终止状态(灰色标记)

    Python代码及注释

    值得注意的是,知乎原版的注释是错误的,采用的是同步更新

    有三个trick可以加快运算速度(对于大规模问题)

    • in-place DP:新值直接替换旧值,只存储一个v(s),
      • 异步更新,提高效率
      • 缺点:更新顺序影响收敛性
    • Prioritised sweeping:state的影响力排序
      • 比较贝尔曼误差绝对值,大的更新,小的忽略
    • Real-time DP:遍历过的才更新
      • 省去了agent 未遍历的状态s,对于稀疏任务效率提升极大
    # 状态集合
    states = [i for i in range(16)]
    # 价值集合
    values = [0 for _ in range(16)]
    # 动作集:
    actions = ["n", "e", "s", "w"]
    # 动作字典:
    ds_actions = {"n": -4, "e": 1, "s": 4, "w": -1}
    # 衰减率
    gamma = 1.00
    
    
    # 定义MDP
    def nextState(s, a):
        next_state = s
        if (s%4 == 0 and a == "w") or (s<4 and a == "n") or 
          ((s+1)%4 == 0 and a == "e") or (s > 11 and a == "s"):
            pass
        else:
            ds = ds_actions[a]
            next_state = s + ds
        return next_state
    
    
    # 定义奖励
    def rewardOf(s):
        return 0 if s in [0, 15] else -1
    
    
    # 判断是否结束
    def isTerminateState(s):
        return s in [0, 15]
    
    
    # 获取所有可能的next state 集合
    def getSuccessors(s):
        successors = []
        if isTerminateState(s):
            return successors
        for a in actions:
            next_state = nextState(s, a)
            # if s != next_state:
            successors.append(next_state)
        return successors
    
    
    # 更新当前位置的价值函数
    def updateValue(s):
        sucessors = getSuccessors(s)
        newValue = 0  # values[s]
        num = 4  # len(successors)
        reward = rewardOf(s)
        for next_state in sucessors:
            newValue += 1.00 / num * (reward + gamma * values[next_state])
        return newValue
    
    
    # 打印所有状态对应价值函数
    def printValue(v):
        for i in range(16):
            print('{0:>6.2f}'.format(v[i]), end=" ")
            if (i + 1) % 4 == 0:
                print("")
        print()
    
    
    # 一次迭代
    # 这里采用的是同步更新,不是异步更新。创建了newvalues数组,遍历过states后,统一更新global values
    def performOneIteration():
        newValues = [0 for _ in range(16)]
        for s in states:
            newValues[s] = updateValue(s)
        global values
        values = newValues
        printValue(values)
    
    # 主函数
    def main():
        max_iterate_times = 160
        cur_iterate_times = 0
        while cur_iterate_times <= max_iterate_times:
            print("Iterate No.{0}".format(cur_iterate_times))
            performOneIteration()
            cur_iterate_times += 1
        printValue(values)
    
    if __name__ == '__main__':
        main()
    

    运算结果如下

    Iterate No.0
      0.00  -1.00  -1.00  -1.00 
     -1.00  -1.00  -1.00  -1.00 
     -1.00  -1.00  -1.00  -1.00 
     -1.00  -1.00  -1.00   0.00 
        
    Iterate No.1
      0.00  -1.75  -2.00  -2.00 
     -1.75  -2.00  -2.00  -2.00 
     -2.00  -2.00  -2.00  -1.75 
     -2.00  -2.00  -1.75   0.00 
        
    .
    .
    .
    
    Iterate No.158
      0.00 -14.00 -20.00 -22.00 
    -14.00 -18.00 -20.00 -20.00 
    -20.00 -20.00 -18.00 -14.00 
    -22.00 -20.00 -14.00   0.00 
        
    Iterate No.159
      0.00 -14.00 -20.00 -22.00 
    -14.00 -18.00 -20.00 -20.00 
    -20.00 -20.00 -18.00 -14.00 
    -22.00 -20.00 -14.00   0.00 
        
    Iterate No.160
      0.00 -14.00 -20.00 -22.00 
    -14.00 -18.00 -20.00 -20.00 
    -20.00 -20.00 -18.00 -14.00 
    -22.00 -20.00 -14.00   0.00 
        
      0.00 -14.00 -20.00 -22.00 
    -14.00 -18.00 -20.00 -20.00 
    -20.00 -20.00 -18.00 -14.00 
    -22.00 -20.00 -14.00   0.00 
    
  • 相关阅读:
    HDU 4709 3-idiots FFT 多项式
    多项式的黑科技
    JZYZOJ 2043 多项式除法和取余 NTT 多项式
    JZYZOJ 2042 多项式逆元 NTT 多项式
    网络爬虫(4)--正则表达式
    网络爬虫(3)--Beautiful页面解析
    网络爬虫(2)--异常处理
    网络爬虫(1)--准备工作
    PCL库配置出现的问题(WIN10+VS2013)
    QT笔记(1)--QT编程环境搭建
  • 原文地址:https://www.cnblogs.com/tolshao/p/rl-shi-jian1dong-tai-gui-hua-zhi-die-dai.html
Copyright © 2020-2023  润新知