• Kruscal算法


    Kruscal算法也是最小生成树算法,这个算法感觉起来可能更直观一点,我们要求最小生成树,我们可以依次找图中的最小权重所在的边,只要这些边不构成回路就添加,知道覆盖所有的顶点。

    算法的具体过程:

    1、将权重排序,要对权重排序,在邻接矩阵中权重处理不是很方便,构建边的结构

    typedef struct
    {
        int begin;
        int end;
        int weight;
    }Edge;

    2、避免环的时候的处理手法,也就是通过一个点找到其下一个点,再根据这个点找下面一个点,依次。。。

    int findParent(int *parent,int f)
    {
        while(parent[f]>0)
        {
            f=parent[f];
        }
        return f;
    }

    这样就可以根据一个边的起点找到一个点,根据边的结束点找到另外一个连接点,如果找到这两个点不一致,则说明不是环。

    具体的怎个代码如下:

    #include <stdio.h>
    
    #define MAXVEX 20
    #define INFINITY 65535
    
    typedef struct
    {
        int arc[MAXVEX][MAXVEX];
        int numVertexes, numEdges;
    }MGraph;
    
    typedef struct
    {
        int begin;
        int end;
        int weight;
    }Edge;
    
    void createMGraph(MGraph *g);
    void sort(Edge edges[],MGraph *g);
    void swapn(Edge *edges,int i,int j);
    int findParent(int *parent,int f);
    void minSpanTreeKruskal(MGraph g);
    
    void createMGraph(MGraph *g)
    {
        int i, j;
    
        g->numEdges=15;
        g->numVertexes=9;
    
        for (i = 0; i < g->numVertexes; i++)
        {
            for ( j = 0; j < g->numVertexes; j++)
            {
                if (i==j)
                    g->arc[i][j]=0;
                else
                    g->arc[i][j] = g->arc[j][i] = INFINITY;
            }
        }
    
        g->arc[0][1]=10;
        g->arc[0][5]=11;
        g->arc[1][2]=18;
        g->arc[1][8]=12;
        g->arc[1][6]=16;
        g->arc[2][8]=8;
        g->arc[2][3]=22;
        g->arc[3][8]=21;
        g->arc[3][6]=24;
        g->arc[3][7]=16;
        g->arc[3][4]=20;
        g->arc[4][7]=7;
        g->arc[4][5]=26;
        g->arc[5][6]=17;
        g->arc[6][7]=19;
    
        for(i = 0; i < g->numVertexes; i++)
        {
            for(j = i; j < g->numVertexes; j++)
            {
                g->arc[j][i] =g->arc[i][j];
            }
        }
    }
    
    void sort(Edge edges[],MGraph *g)
    {
        int i,j;
        for(i=0;i<g->numEdges;i++)
        {
            for(j=i+1;j<g->numEdges;j++)
            {
                if(edges[i].weight>edges[j].weight)
                {
                    swapn(edges,i,j);
                }
            }
        }
    }
    
    void swapn(Edge *edges,int i,int j)
    {
        int temp;
        temp = edges[i].begin;
        edges[i].begin = edges[j].begin;
        edges[j].begin = temp;
    
        temp = edges[i].end;
        edges[i].end = edges[j].end;
        edges[j].end = temp;
    
        temp = edges[i].weight;
        edges[i].weight = edges[j].weight;
        edges[j].weight = temp;
    }
    
    void minSpanTreeKruskal(MGraph g)
    {
        int i,j,n,m;
        int k =0;
        int parent[MAXVEX];
    
        Edge edges[MAXVEX];
    
        for(i = 0;i<g.numVertexes-1;i++)
        {
            for(j=i+1;j<g.numVertexes;j++)
            {
                if(g.arc[i][j]<INFINITY)
                {
                    edges[k].begin = i;
                    edges[k].end = j;
                    edges[k].weight = g.arc[i][j];
                    k++;
                }
            }
        }
        sort(edges,&g);
    
        for(i=0;i<g.numVertexes;i++)
        {
            parent[i] = 0;
        }
    
        printf("打印:
    ");
        for(i = 0; i<g.numEdges; i++)
        {
            n= findParent(parent,edges[i].begin);
            m= findParent(parent,edges[i].end);
            if(n!=m)
            {
                parent[n] = m;
                printf("(%d,%d) %d
    ",edges[i].begin,edges[i].end,edges[i].weight);
            }
        }
    }
    
    int findParent(int *parent,int f)
    {
        while(parent[f]>0)
        {
            f=parent[f];
        }
        return f;
    }
    
    
    int main()
    {
        MGraph g;
        createMGraph(&g);
        minSpanTreeKruskal(g);
        return 0;
    }
  • 相关阅读:
    Java比较两个对象的不同之处
    windows下MongoDB的安装及配置
    springboot对应的springcloud版本
    Spring注解 @Scope 详解
    https HttpUtils 绕过证书
    thymeleaf 基本使用
    java8 groupby 对多个字段进行去重, 统计 partitioningBy
    linux硬件数据
    Nginx referer防盗链模块
    Nginx HTTP 过滤addition模块(响应前后追加数据)
  • 原文地址:https://www.cnblogs.com/fengbing/p/3580026.html
Copyright © 2020-2023  润新知