损失函数
评价指标
Precision
TP/(TP+FP)
同一Ground Truth只计算一次
Recall
TP/(TP+FN)
IoU(Intersection of Union)
任务:语义分割
TP/(TP+FP+FN)
AP(Average Precision)
任务:目标检测,实例分割
AP简单来说就是PR曲线下的面积。
以目标检测任务为例:
- 给定一个预测的候选框,我们首先要判断其是否正确(TP),对于目标检测来说通常取IoU>0.5为正确的标准;
- 而模型输出是N个候选框,按置信度从大到小排序,我们可以选择top-k或者大于某个置信度阈值的候选框作为最终预测结果。每选择一个阈值,我们就可以根据上一条的标准计算预测结果的Precision和Recall,因为两者往往是矛盾的,所以当我们选择一组阈值时,就可以得到一条PR曲线(纵坐标为Precision,横坐标为Recall);
- 得到PR曲线后,计算曲线下的面积就可以得到AP;
补充: - 实际计算AP的PR曲线有许多不同的规定;
- IoU的阈值不一定是0.5,有的论文还会给出阈值为0.75时的结果。
- 而COCO数据集的AP计算方式为:IoU的阈值在 0.5 - 0.95 的区间上每隔0.5计算一次AP的值,取所有结果的平均值作为最终的结果。
mAP(mean AP)
通常AP指的是单个类别,而mAP是各类别的平均值。
也有些地方默认用AP表示mAP的意思。