似乎树的重心个数是(O(1))的?
那么对于每个重心以他为根最小表示法判断子树...
递归处理...先对于每棵子树处理,然后将子树按最小表示法排序.排序关键字就是每一层的儿子数?反正可以O(子树大小)比较一次...可以加一点hash,等数据的比较来优化速度...
这部分的时间似乎是(T(n)=p T(n/p)+O(plog{p}*frac{n}{p})=O(nlog{n}))...然后就没了?
不懂哦..求教
#include <cstdio>
#include <vector>
#include <algorithm>
#define maxn 2000100
using namespace std;
#define pushvc(_v,_t) _v.push_back(_t)
#define hashmod 998244353
namespace graph{
struct node;
struct edge{
node* t;
edge* n;
edge(node* t=NULL,edge* n=NULL):t(t),n(n){}
};
struct node{
int id;
edge* h;
node(int id=0,edge* h=NULL):id(id),h(h){}
};
struct graph{ // utility for storing a graph, and later convert to a tree
node nodes[maxn];
edge edges[maxn<<1];
int edgeSize,nodeCount;
graph(int edgeSize=0,int nodeCount=0):edgeSize(edgeSize),nodeCount(nodeCount){}
inline void addedge(node* a,node* b){
++edgeSize;
edges[edgeSize]=(edge){b,a->h};
a->h=edges+edgeSize;
}
inline void bidedge(node* a,node* b){
addedge(a,b); addedge(b,a);
}
inline node* newNode(){
++nodeCount;
nodes[nodeCount].id=nodeCount;
return nodes+nodeCount;
}
inline node& operator[](int n){
return nodes[n];
}
inline node* operator+ (int n){
return nodes+n;
}
};
struct unrooted_tree{
struct node_data{
int tot_sub,max_sub;
} nt_nds[maxn];
graph grf;
int size;
node* wc[10];
int sizewc;
int mimasubtree;
unrooted_tree(int _size=0){
size=_size;
if(_size){
while(_size){
grf.newNode();
--_size;
}
}
}
inline int _gwc_dfs(node* n,node* f){
nt_nds[n->id].max_sub=0;
nt_nds[n->id].tot_sub=1;
for(edge* i=n->h;i;i=i->n){
if(i->t == f) continue;
int q=_gwc_dfs(i->t,n);
nt_nds[n->id].tot_sub+=q;
if(q > nt_nds[n->id].max_sub) nt_nds[n->id].max_sub=q;
}
if((size-nt_nds[n->id].tot_sub) > nt_nds[n->id].max_sub)
nt_nds[n->id].max_sub=size-nt_nds[n->id].tot_sub;
return nt_nds[n->id].tot_sub;
}
inline void pushwc(node* p){
wc[++sizewc]=p;
}
inline int getwcs(){ // get weight centers, return the number of weight centers.
_gwc_dfs(grf+1,NULL);
mimasubtree=0x7fffffff;
sizewc=0;
for(int i=1;i<=size;++i) if(nt_nds[i].max_sub < mimasubtree) mimasubtree=nt_nds[i].max_sub;
for(int i=1;i<=size;++i) if(nt_nds[i].max_sub== mimasubtree) pushwc(grf+i);
return sizewc;
}
FILE* otd; // for dot file output
inline void _print_dfs(node* n,node* f){
fprintf(otd,"A%d[label="#%d"];
",n->id,n->id);
for(edge* i=n->h;i;i=i->n){
if(i->t == f) continue;
fprintf(otd,"A%d -> A%d;
",n->id,i->t->id);
_print_dfs(i->t,n);
}
}
inline void print_dot(node* asroot){
fprintf(otd,"digraph{
"
" node[color="#2266ff",fillcolor="#aaccff",fontname="Courier",regular=true];
");
_print_dfs(asroot,NULL);
fprintf(otd,"}
");
}
inline void openOutputFile(const char* filename){
if(otd) fclose(otd),otd=NULL;
otd=fopen(filename,"w");
}
};
// FILE* otd; // for dot file output
// inline void mopenOutputFile(const char* filename){
// if(otd) fclose(otd),otd=NULL;
// otd=fopen(filename,"w");
// }
struct rooted_tree{
int size,maxdepth,hash;
node* root;
vector<rooted_tree*> sons;
void build(node* p,node* f);
void print();
};
inline int cmp_same (rooted_tree* a,rooted_tree* b){
if(a->size - b->size) return a->size - b->size;
if(a->maxdepth - b->maxdepth) return a->maxdepth - b->maxdepth;
if(a->hash - b->hash) return a->hash - b->hash;
int ax=a->sons.size(),bx=b->sons.size();
if(ax - bx) return ax - bx;
for(int i=0;i<ax;++i){
int q=cmp_same(a->sons[i],b->sons[i]);
if(q) return q;
}
return 0;
}
inline bool cmp_build(const rooted_tree* a,const rooted_tree* b){
if(a->size - b->size) return a->size > b->size;
if(a->maxdepth - b->maxdepth) return a->maxdepth > b->maxdepth;
if(a->hash - b->hash) return a->hash > b->hash;
int ax=a->sons.size(),bx=b->sons.size();
if(ax - bx) return ax > bx;
for(int i=0;i<ax;++i){
int q=cmp_same(a->sons[i],b->sons[i]);
if(q) return q>0;
}
return 0;
}
void rooted_tree::build(node* p,node* f){
root=p; size=1; maxdepth=0; hash=1;
for(edge* i=p->h;i;i=i->n){
if(i->t == f) continue;
rooted_tree* s1=new rooted_tree;
s1->build(i->t,p);
pushvc(sons,s1);
size+=s1->size;
if(s1->maxdepth > maxdepth) maxdepth=s1->maxdepth;
}
++maxdepth;
sort(sons.begin(),sons.end(),cmp_build);
for(int i=0,_=sons.size();i<_;++i){
hash=((long long)hash+(long long)sons[i]->hash*(long long)(i+1))%hashmod;
//some very weak hash function, because the time complexity is
//provided O(nlogn) total, so it is just a speed up
}
}
bool isiso(unrooted_tree* a,unrooted_tree* b){
if(a->size != b->size) return 0;
a->getwcs();
int q=b->getwcs();
if(a->sizewc != b->sizewc) return 0;
if(a->mimasubtree != b->mimasubtree) return 0;
rooted_tree* ptree=new rooted_tree;
ptree->build(a->wc[1],NULL); // build an minimized tree
for(int i=1;i<=q;++i){
rooted_tree* qtree=new rooted_tree;
qtree->build(b->wc[i],NULL);
if(!cmp_same(ptree,qtree)) return 1;
}
return 0;
}
inline unrooted_tree* readTree_byEdge(){
int n;
scanf("%d",&n);
unrooted_tree* p=new unrooted_tree(n);
for(int i=1,a,b;i<n;++i){
scanf("%d%d",&a,&b);
p->grf.bidedge(p->grf+a,p->grf+b);
}
return p;
}
void rooted_tree::print(){
printf("Access node %d with %d sons,Fields: size %d maxdepth %d hash%d
",
root->id,sons.size(),size,maxdepth,hash);
if(sons.size()){
printf("Sons:");
for(int i=0;i<sons.size();++i) printf("%d ",sons[i]->root->id);
putchar('
');
for(int i=0;i<sons.size();++i) sons[i]->print();
}
}
}
using namespace graph;
int main(){
unrooted_tree* p=readTree_byEdge();
unrooted_tree* q=readTree_byEdge();
// p->openOutputFile("out.dot");
// p->getwcs();
// p->print_dot(p->wc[1]);
// printf("%d %d %d
",p->wc[1]->id,p->mimasubtree,p->wc[2]->id);
// rooted_tree* k=new rooted_tree;
// k->build(p->wc[1],NULL);
// k->print();
// rooted_tree* kq=new rooted_tree;
// if(p->wc[2]){
// kq->build(p->wc[2],NULL);
// kq->print();
// printf("%s
",cmp_same(k,kq)?"Diff":"Same");
// }
printf("%s
",isiso(p,q)?"Same":"Diff");
return 0;
}