• Akka(18): Stream:组合数据流,组件-Graph components


       akka-stream的数据流可以由一些组件组合而成。这些组件统称数据流图Graph,它描述了数据流向和处理环节。Source,Flow,Sink是最基础的Graph。用基础Graph又可以组合更复杂的复合Graph。如果一个Graph的所有端口(输入、输出)都是连接的话就是一个闭合流图RunnableGraph,否则就属于·开放流图PartialGraph。一个完整的(可运算的)数据流就是一个RunnableGraph。Graph的输出出入端口可以用Shape来描述:

    /**
     * A Shape describes the inlets and outlets of a [[Graph]]. In keeping with the
     * philosophy that a Graph is a freely reusable blueprint, everything that
     * matters from the outside are the connections that can be made with it,
     * otherwise it is just a black box.
     */
    abstract class Shape {
      /**
       * Scala API: get a list of all input ports
       */
      def inlets: immutable.Seq[Inlet[_]]
    
      /**
       * Scala API: get a list of all output ports
       */
      def outlets: immutable.Seq[Outlet[_]]
    
    ...

    Shape类型的抽象函数inlets,outlets分别代表Graph形状的输入、输出端口。下面列出了aka-stream提供的几个现有形状Shape:

    final case class SourceShape[+T](out: Outlet[T @uncheckedVariance]) extends Shape {...}
    final case class FlowShape[-I, +O](in: Inlet[I @uncheckedVariance], out: Outlet[O @uncheckedVariance]) extends Shape {...}
    final case class SinkShape[-T](in: Inlet[T @uncheckedVariance]) extends Shape {...}
    sealed abstract class ClosedShape extends Shape
    /**
     * A bidirectional flow of elements that consequently has two inputs and two
     * outputs, arranged like this:
     *
     * {{{
     *        +------+
     *  In1 ~>|      |~> Out1
     *        | bidi |
     * Out2 <~|      |<~ In2
     *        +------+
     * }}}
     */
    final case class BidiShape[-In1, +Out1, -In2, +Out2](
      in1:  Inlet[In1 @uncheckedVariance],
      out1: Outlet[Out1 @uncheckedVariance],
      in2:  Inlet[In2 @uncheckedVariance],
      out2: Outlet[Out2 @uncheckedVariance]) extends Shape {...}
    object UniformFanInShape {
      def apply[I, O](outlet: Outlet[O], inlets: Inlet[I]*): UniformFanInShape[I, O] =
        new UniformFanInShape(inlets.size, FanInShape.Ports(outlet, inlets.toList))
    }
    object UniformFanOutShape {
      def apply[I, O](inlet: Inlet[I], outlets: Outlet[O]*): UniformFanOutShape[I, O] =
        new UniformFanOutShape(outlets.size, FanOutShape.Ports(inlet, outlets.toList))
    }

    Shape是Graph类型的一个参数:

    trait Graph[+S <: Shape, +M] {
      /**
       * Type-level accessor for the shape parameter of this graph.
       */
      type Shape = S @uncheckedVariance
      /**
       * The shape of a graph is all that is externally visible: its inlets and outlets.
       */
      def shape: S
    ...

    RunnableGraph类型的Shape是ClosedShape:

    /**
     * Flow with attached input and output, can be executed.
     */
    final case class RunnableGraph[+Mat](override val traversalBuilder: TraversalBuilder) extends Graph[ClosedShape, Mat] {
      override def shape = ClosedShape
    
      /**
       * Transform only the materialized value of this RunnableGraph, leaving all other properties as they were.
       */
      def mapMaterializedValue[Mat2](f: Mat ⇒ Mat2): RunnableGraph[Mat2] =
        copy(traversalBuilder.transformMat(f.asInstanceOf[Any ⇒ Any]))
    
      /**
       * Run this flow and return the materialized instance from the flow.
       */
      def run()(implicit materializer: Materializer): Mat = materializer.materialize(this)
    ...

    我们可以用akka-stream提供的GraphDSL来构建Graph。GraphDSL继承了GraphApply的create方法,GraphDSL.create(...)就是构建Graph的方法:

    object GraphDSL extends GraphApply {...}
    trait GraphApply {
      /**
       * Creates a new [[Graph]] by passing a [[GraphDSL.Builder]] to the given create function.
       */
      def create[S <: Shape]()(buildBlock: GraphDSL.Builder[NotUsed] ⇒ S): Graph[S, NotUsed] = {
        val builder = new GraphDSL.Builder
        val s = buildBlock(builder)
    
        createGraph(s, builder)
      }
    ...
    def create[S <: Shape, Mat](g1: Graph[Shape, Mat])(buildBlock: GraphDSL.Builder[Mat] ⇒ (g1.Shape) ⇒ S): Graph[S, Mat] = {...}
    def create[S <: Shape, Mat, M1, M2](g1: Graph[Shape, M1], g2: Graph[Shape, M2])(combineMat: (M1, M2) ⇒ Mat)(buildBlock: GraphDSL.Builder[Mat] ⇒ (g1.Shape, g2.Shape) ⇒ S): Graph[S, Mat] = {...}
    ...
    def create[S <: Shape, Mat, M1, M2, M3, M4, M5](g1: Graph[Shape, M1], g2: Graph[Shape, M2], g3: Graph[Shape, M3], g4: Graph[Shape, M4], g5: Graph[Shape, M5])(combineMat: (M1, M2, M3, M4, M5) ⇒ Mat)(buildBlock: GraphDSL.Builder[Mat] ⇒ (g1.Shape, g2.Shape, g3.Shape, g4.Shape, g5.Shape) ⇒ S): Graph[S, Mat] = {
    ...}

    buildBlock函数类型:buildBlock: GraphDSL.Builder[Mat] ⇒ (g1.Shape, g2.Shape,...,g5.Shape) ⇒ S,g?代表合并处理后的开放型流图。下面是几个最基本的Graph构建试例:

    import akka.actor._
    import akka.stream._
    import akka.stream.scaladsl._
    
    object SimpleGraphs extends App{
    
      implicit val sys = ActorSystem("streamSys")
      implicit val ec = sys.dispatcher
      implicit val mat = ActorMaterializer()
    
      val source = Source(1 to 10)
      val flow = Flow[Int].map(_ * 2)
      val sink = Sink.foreach(println)
    
    
      val sourceGraph = GraphDSL.create(){implicit builder =>
        import GraphDSL.Implicits._
        val src = source.filter(_ % 2 == 0)
        val pipe = builder.add(Flow[Int])
        src ~> pipe.in
        SourceShape(pipe.out)
      }
    
      Source.fromGraph(sourceGraph).runWith(sink).andThen{case _ => } // sys.terminate()}
    
      val flowGraph = GraphDSL.create(){implicit builder =>
        import GraphDSL.Implicits._
    
        val pipe = builder.add(Flow[Int])
        FlowShape(pipe.in,pipe.out)
      }
    
      val (_,fut) = Flow.fromGraph(flowGraph).runWith(source,sink)
      fut.andThen{case _ => } //sys.terminate()}
    
    
      val sinkGraph = GraphDSL.create(){implicit builder =>
         import GraphDSL.Implicits._
         val pipe = builder.add(Flow[Int])
         pipe.out.map(_ * 3) ~> Sink.foreach(println)
         SinkShape(pipe.in)
      }
    
      val fut1 = Sink.fromGraph(sinkGraph).runWith(source)
    
      Thread.sleep(1000)
      sys.terminate()

    上面我们示范了Source,Flow,Sink的Graph编写,我们使用了Flow[Int]作为共同基础组件。我们知道:akka-stream的Graph可以用更简单的Partial-Graph来组合,而所有Graph最终都是用基础流图Core-Graph如Source,Flow,Sink组合而成的。上面例子里我们是用builder.add(...)把一个Flow Graph加入到一个空的Graph模版里,builder.add返回Shape pipe用于揭露这个被加入的Graph的输入输出端口。然后我们按目标Graph的功能要求把pipe的端口连接起来就完成了这个数据流图的设计了。测试使用证明这几个Graph的功能符合预想。下面我们还可以试着自定义一种类似的Pipe类型Graph来更细致的了解Graph组合的过程。所有基础组件Core-Graph都必须定义Shape来描述它的输入输出端口,定义GraphStage中的GraphStateLogic来描述对数据流元素具体的读写方式。

    import akka.actor._
    import akka.stream._
    import akka.stream.scaladsl._
    import scala.collection.immutable
    
    case class PipeShape[In,Out](
        in: Inlet[In],
        out: Outlet[Out]) extends Shape {
    
      override def inlets: immutable.Seq[Inlet[_]] = in :: Nil
    
      override def outlets: immutable.Seq[Outlet[_]] = out :: Nil
    
      override def deepCopy(): Shape = 
        PipeShape(
          in = in.carbonCopy(),
          out = out.carbonCopy()
        )
    }

    PipeShape有一个输入端口和一个输出端口。因为继承了Shape类所以必须实现Shape类的抽象函数。假设我们设计一个Graph,能把用户提供的一个函数用来对输入元素进行施用,如:source.via(ApplyPipe(myFunc)).runWith(sink)。当然,我们可以直接使用source.map(r => myFunc).runWith(sink),不过我们需要的是:ApplyPipe里可能涉及到许多预设定的共用功能,然后myFunc是其中的一部分代码。如果用map(...)的话用户就必须提供所有的代码了。ApplyPipe的形状是PipeShape,下面是它的GraphState设计:

      class Pipe[In, Out](f: In => Out) extends GraphStage[PipeShape[In, Out]] {
        val in = Inlet[In]("Pipe.in")
        val out = Outlet[Out]("Pipe.out")
    
        override def shape = PipeShape(in, out)
    
        override def initialAttributes: Attributes = Attributes.none
    
        override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
          new GraphStageLogic(shape) with InHandler with OutHandler {
    
            private def decider =
              inheritedAttributes.get[SupervisionStrategy].map(_.decider).getOrElse(Supervision.stoppingDecider)
            
            override def onPull(): Unit = pull(in)
    
            override def onPush(): Unit = {
              try {
                push(out, f(grab(in)))
              }
              catch {
                case NonFatal(ex) ⇒ decider(ex) match {
                  case Supervision.Stop ⇒ failStage(ex)
                  case _ ⇒ pull(in)
                }
              }
            }
    
            setHandlers(in,out, this)
          }
      }

    在这个Pipe GraphStage定义里首先定义了输入输出端口in,out,然后通过createLogic来定义GraphStageLogic,InHandler,outHandler。InHandler和OutHandler分别对应输入输出端口上数据元素的活动处理方式:

    /**
     * Collection of callbacks for an input port of a [[GraphStage]]
     */
    trait InHandler {
      /**
       * Called when the input port has a new element available. The actual element can be retrieved via the
       * [[GraphStageLogic.grab()]] method.
       */
      @throws(classOf[Exception])
      def onPush(): Unit
    
      /**
       * Called when the input port is finished. After this callback no other callbacks will be called for this port.
       */
      @throws(classOf[Exception])
      def onUpstreamFinish(): Unit = GraphInterpreter.currentInterpreter.activeStage.completeStage()
    
      /**
       * Called when the input port has failed. After this callback no other callbacks will be called for this port.
       */
      @throws(classOf[Exception])
      def onUpstreamFailure(ex: Throwable): Unit = GraphInterpreter.currentInterpreter.activeStage.failStage(ex)
    }
    
    /**
     * Collection of callbacks for an output port of a [[GraphStage]]
     */
    trait OutHandler {
      /**
       * Called when the output port has received a pull, and therefore ready to emit an element, i.e. [[GraphStageLogic.push()]]
       * is now allowed to be called on this port.
       */
      @throws(classOf[Exception])
      def onPull(): Unit
    
      /**
       * Called when the output port will no longer accept any new elements. After this callback no other callbacks will
       * be called for this port.
       */
      @throws(classOf[Exception])
      def onDownstreamFinish(): Unit = {
        GraphInterpreter
          .currentInterpreter
          .activeStage
          .completeStage()
      }
    }

    akka-stream Graph的输入输出处理实现了Reactive-Stream协议。所以我们最好使用akka-stream提供现成的pull,push来重写抽象函数onPull,onPush。然后用setHandlers来设定这个GraphStage的输入输出及处理函数handler:

      /**
       * Assign callbacks for linear stage for both [[Inlet]] and [[Outlet]]
       */
      final protected def setHandlers(in: Inlet[_], out: Outlet[_], handler: InHandler with OutHandler): Unit = {
        setHandler(in, handler)
        setHandler(out, handler)
      }
     /**
       * Assigns callbacks for the events for an [[Inlet]]
       */
      final protected def setHandler(in: Inlet[_], handler: InHandler): Unit = {
        handlers(in.id) = handler
        if (_interpreter != null) _interpreter.setHandler(conn(in), handler)
      }
      /**
       * Assigns callbacks for the events for an [[Outlet]]
       */
      final protected def setHandler(out: Outlet[_], handler: OutHandler): Unit = {
        handlers(out.id + inCount) = handler
        if (_interpreter != null) _interpreter.setHandler(conn(out), handler)
      }

    有了Shape和GraphStage后我们就可以构建一个Graph:

    def applyPipe[In,Out](f: In => Out) = GraphDSL.create() {implicit builder =>
        val pipe = builder.add(new Pipe(f))
        FlowShape(pipe.in,pipe.out)
      }

    也可以直接用来组合一个复合Graph:

      RunnableGraph.fromGraph(
        GraphDSL.create(){implicit builder =>
          import GraphDSL.Implicits._
    
          val source = Source(1 to 10)
          val sink = Sink.foreach(println)
          val f: Int => Int = _ * 3
          val pipeShape = builder.add(new Pipe[Int,Int](f))
          source ~> pipeShape.in
          pipeShape.out~> sink
          ClosedShape
    
        }
      ).run()

    整个例子源代码如下:

    import akka.actor._
    import akka.stream._
    import akka.stream.scaladsl._
    import akka.stream.ActorAttributes._
    import akka.stream.stage._
    
    import scala.collection.immutable
    import scala.util.control.NonFatal
    
    object PipeOps {
    
      case class PipeShape[In, Out](
                                     in: Inlet[In],
                                     out: Outlet[Out]) extends Shape {
    
        override def inlets: immutable.Seq[Inlet[_]] = in :: Nil
    
        override def outlets: immutable.Seq[Outlet[_]] = out :: Nil
    
        override def deepCopy(): Shape =
          PipeShape(
            in = in.carbonCopy(),
            out = out.carbonCopy()
          )
      }
    
      class Pipe[In, Out](f: In => Out) extends GraphStage[PipeShape[In, Out]] {
        val in = Inlet[In]("Pipe.in")
        val out = Outlet[Out]("Pipe.out")
    
        override def shape = PipeShape(in, out)
    
        override def initialAttributes: Attributes = Attributes.none
    
        override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
          new GraphStageLogic(shape) with InHandler with OutHandler {
    
            private def decider =
              inheritedAttributes.get[SupervisionStrategy].map(_.decider).getOrElse(Supervision.stoppingDecider)
    
            override def onPull(): Unit = pull(in)
    
            override def onPush(): Unit = {
              try {
                push(out, f(grab(in)))
              }
              catch {
                case NonFatal(ex) ⇒ decider(ex) match {
                  case Supervision.Stop ⇒ failStage(ex)
                  case _ ⇒ pull(in)
                }
              }
            }
    
            setHandlers(in,out, this)
          }
      }
    
      def applyPipe[In,Out](f: In => Out) = GraphDSL.create() {implicit builder =>
        val pipe = builder.add(new Pipe(f))
        FlowShape(pipe.in,pipe.out)
      }
    
    }
    
    object ShapeDemo1 extends App {
    import PipeOps._
      implicit val sys = ActorSystem("streamSys")
      implicit val ec = sys.dispatcher
      implicit val mat = ActorMaterializer()
    
      RunnableGraph.fromGraph(
        GraphDSL.create(){implicit builder =>
          import GraphDSL.Implicits._
    
          val source = Source(1 to 10)
          val sink = Sink.foreach(println)
          val f: Int => Int = _ * 3
          val pipeShape = builder.add(new Pipe[Int,Int](f))
          source ~> pipeShape.in
          pipeShape.out~> sink
          ClosedShape
    
        }
      ).run()
    
    
      val fut = Source(1 to 10).via(applyPipe[Int,Int](_ * 2)).runForeach(println)
    
      scala.io.StdIn.readLine()
    
      sys.terminate()
    
    
    }

     

  • 相关阅读:
    Jmeter基础元件
    Jmeter性能测试之添加思考时间
    Jmeter断言实例—响应断言
    Jmeter调试脚本之断言
    Jmeter调试脚本之关联
    jmeter调试脚本之变量参数化
    jmeter调试脚本之用户自定义变量
    XAMPP中Apache和Mysql启动失败问题总结
    Jmeter运行badboy录制的脚本
    Bugfree安装与使用
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/7403931.html
Copyright © 2020-2023  润新知