• FunDA(16)- 示范:整合并行运算


       在对上两篇讨论中我们介绍了并行运算的两种体现方式:并行构建数据源及并行运算用户自定义函数。我们分别对这两部分进行了示范。本篇我准备示范把这两种情况集成一体的并行运算模式。这次介绍的数据源并行构建方式也与前面描述的有所不同:在前面讨论里我们预知需要从三个独立流来并行构建数据源。但如果我们有一个不知长度的数据流,它的每个元素代表不同的数据流,应该如何处理。我们知道在AQMRPT表里有从1999年到2xxx年的空气质量测量数据,我们可以试着并行把按年份生成的数据流构建成一个数据源。直接使用上期示范中的铺垫代码包括NORMAQM表初始化和从STATES和COUNTIES里用名称搜索对应id的函数:

      val db = Database.forConfig("h2db")
    
      //drop original table schema
      val futVectorTables = db.run(MTable.getTables)
    
      val futDropTable = futVectorTables.flatMap{ tables => {
        val tableNames = tables.map(t => t.name.name)
        if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
          db.run(NORMAQMQuery.schema.drop)
        else Future()
      }
      }.andThen {
        case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} dropped successfully! ")
        case Failure(e) => println(s"Failed to drop Table ${NORMAQMQuery.baseTableRow.tableName}, it may not exist! Error: ${e.getMessage}")
      }
      Await.ready(futDropTable,Duration.Inf)
    
      //create new table to refine AQMRawTable
      val actionCreateTable = Models.NORMAQMQuery.schema.create
      val futCreateTable = db.run(actionCreateTable).andThen {
        case Success(_) => println("Table created successfully!")
        case Failure(e) => println(s"Table may exist already! Error: ${e.getMessage}")
      }
      //would carry on even fail to create table
      Await.ready(futCreateTable,Duration.Inf)
    
    
      //truncate data, only available in slick 3.2.1
      val futTruncateTable = futVectorTables.flatMap{ tables => {
        val tableNames = tables.map(t => t.name.name)
        if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
          db.run(NORMAQMQuery.schema.truncate)
        else Future()
      }
      }.andThen {
        case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} truncated successfully!")
        case Failure(e) => println(s"Failed to truncate Table ${NORMAQMQuery.baseTableRow.tableName}! Error: ${e.getMessage}")
      }
      Await.ready(futDropTable,Duration.Inf)
    
      //a conceived task for the purpose of resource consumption
      //getting id with corresponding name from STATES table
      def getStateID(state: String): Int = {
        //create a stream for state id with state name
        implicit def toState(row:  StateTable#TableElementType) = StateModel(row.id,row.name)
        val stateLoader = FDAViewLoader(slick.jdbc.H2Profile)(toState _)
        val stateSeq = stateLoader.fda_typedRows(StateQuery.result)(db).toSeq
        //constructed a Stream[Task,String]
        val stateStream =  fda_staticSource(stateSeq)()
        var id  = -1
        def getid: FDAUserTask[FDAROW] = row => {
          row match {
            case StateModel(stid,stname) =>   //target row type
              if (stname.contains(state)) {
                id = stid
                fda_break      //exit
              }
              else fda_skip   //take next row
            case _ => fda_skip
          }
        }
        stateStream.appendTask(getid).startRun
        id
      }
      //another conceived task for the purpose of resource consumption
      //getting id with corresponding names from COUNTIES table
      def getCountyID(state: String, county: String): Int = {
        //create a stream for county id with state name and county name
        implicit def toCounty(row:  CountyTable#TableElementType) = CountyModel(row.id,row.name)
        val countyLoader = FDAViewLoader(slick.jdbc.H2Profile)(toCounty _)
        val countySeq = countyLoader.fda_typedRows(CountyQuery.result)(db).toSeq
        //constructed a Stream[Task,String]
        val countyStream =  fda_staticSource(countySeq)()
        var id  = -1
        def getid: FDAUserTask[FDAROW] = row => {
          row match {
            case CountyModel(cid,cname) =>   //target row type
              if (cname.contains(state) && cname.contains(county)) {
                id = cid
                fda_break      //exit
              }
              else fda_skip   //take next row
            case _ => fda_skip
          }
        }
        countyStream.appendTask(getid).startRun
        id
      }

    以及两个用户自定义函数:

      //process input row and produce action row to insert into NORMAQM
      def getIdsThenInsertAction: FDAUserTask[FDAROW] = row => {
        row match {
          case aqm: AQMRPTModel =>
            if (aqm.valid) {
              val stateId = getStateID(aqm.state)
              val countyId = getCountyID(aqm.state,aqm.county)
              val action = NORMAQMQuery += NORMAQMModel(0,aqm.mid, stateId, countyId, aqm.year,aqm.value,aqm.total)
              fda_next(FDAActionRow(action))
            }
            else fda_skip
          case _ => fda_skip
        }
      }
      //runner for the action rows
      val runner = FDAActionRunner(slick.jdbc.H2Profile)
      def runInsertAction: FDAUserTask[FDAROW] = row =>
        row match {
          case FDAActionRow(action) =>
            runner.fda_execAction(action)(db)
            fda_skip
          case _ => fda_skip
        }

    跟着是本篇新增代码,我们先构建一个所有年份的流:

     //create parallel sources
      //get a stream of years
      val qryYears = AQMRPTQuery.map(_.year).distinct
      case class Years(year: Int) extends FDAROW
    
      implicit def toYears(y: Int) = Years(y)
    
      val yearViewLoader = FDAViewLoader(slick.jdbc.H2Profile)(toYears _)
      val yearSeq = yearViewLoader.fda_typedRows(qryYears.result)(db).toSeq
      val yearStream = fda_staticSource(yearSeq)()

    下面是一个按年份从AQMRPT表读取数据的函数:

      //strong row type
      implicit def toAQMRPT(row: AQMRPTTable#TableElementType) =
        AQMRPTModel(row.rid, row.mid, row.state, row.county, row.year, row.value, row.total, row.valid)
    
      //shared stream loader when operate in parallel mode
      val AQMRPTLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toAQMRPT _)
    
      //loading rows with year yr
      def loadRowsInYear(yr: Int) = {
        //a new query
        val query = AQMRPTQuery.filter(row => row.year === yr)
        //reuse same loader
        AQMRPTLoader.fda_typedStream(query.result)(db)(256, 256)()
      }

    我们可以预见多个loadRowsInYear函数实例会共享统一的FDAStreamLoader AQMRPTLoader。用户自定义数据读取函数类型是FDASourceLoader。下面是FDASourceLoader示范代码:

      //loading rows by year
      def loadRowsByYear: FDASourceLoader = row => {
        row match {
          case Years(y) => loadRowsInYear(y) //produce stream of the year
          case _ => fda_appendRow(FDANullRow)
        }
    
      }

    我们用toParSource构建一个并行数据源:

      //get parallel source constructor
      val parSource = yearStream.toParSource(loadRowsByYear)

    用fda_par_source来把并行数据源转换成统一数据流:

      //produce a stream from parallel sources
      val source = fda_par_source(parSource)(3)

    source是个FDAPipeLine,可以直接运算:source.startRun,也可以在后面挂上多个环节。下面我们把其它两个用户自定义函数转成并行运算函数后接到source后面:

      //the following is a process of composition of stream combinators
      //get parallel source constructor
      val parSource = yearStream.toParSource(loadRowsByYear)
    
      //implicit val strategy = Strategy.fromCachedDaemonPool("cachedPool")
      //produce a stream from parallel sources
      val source = fda_par_source(parSource)(3)
      //turn getIdsThenInsertAction into parallel task
      val parTasks = source.toPar(getIdsThenInsertAction)
      //runPar to produce a new stream
      val actionStream =fda_runPar(parTasks)(3)
      //turn runInsertAction into parallel task
      val parRun = actionStream.toPar(runInsertAction)
      //runPar and carry out by startRun
      fda_runPar(parRun)(2).startRun

    下面是本次示范的完整源代码: 

    import slick.jdbc.meta._
    import com.bayakala.funda._
    import api._
    import scala.language.implicitConversions
    import scala.concurrent.ExecutionContext.Implicits.global
    import scala.concurrent.duration._
    import scala.concurrent.{Await, Future}
    import scala.util.{Failure, Success}
    import slick.jdbc.H2Profile.api._
    import Models._
    import fs2.Strategy
    
    object ParallelExecution extends App {
    
      val db = Database.forConfig("h2db")
    
      //drop original table schema
      val futVectorTables = db.run(MTable.getTables)
    
      val futDropTable = futVectorTables.flatMap{ tables => {
        val tableNames = tables.map(t => t.name.name)
        if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
          db.run(NORMAQMQuery.schema.drop)
        else Future()
      }
      }.andThen {
        case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} dropped successfully! ")
        case Failure(e) => println(s"Failed to drop Table ${NORMAQMQuery.baseTableRow.tableName}, it may not exist! Error: ${e.getMessage}")
      }
      Await.ready(futDropTable,Duration.Inf)
    
      //create new table to refine AQMRawTable
      val actionCreateTable = Models.NORMAQMQuery.schema.create
      val futCreateTable = db.run(actionCreateTable).andThen {
        case Success(_) => println("Table created successfully!")
        case Failure(e) => println(s"Table may exist already! Error: ${e.getMessage}")
      }
      //would carry on even fail to create table
      Await.ready(futCreateTable,Duration.Inf)
    
    
      //truncate data, only available in slick 3.2.1
      val futTruncateTable = futVectorTables.flatMap{ tables => {
        val tableNames = tables.map(t => t.name.name)
        if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
          db.run(NORMAQMQuery.schema.truncate)
        else Future()
      }
      }.andThen {
        case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} truncated successfully!")
        case Failure(e) => println(s"Failed to truncate Table ${NORMAQMQuery.baseTableRow.tableName}! Error: ${e.getMessage}")
      }
      Await.ready(futDropTable,Duration.Inf)
    
      //a conceived task for the purpose of resource consumption
      //getting id with corresponding name from STATES table
      def getStateID(state: String): Int = {
        //create a stream for state id with state name
        implicit def toState(row:  StateTable#TableElementType) = StateModel(row.id,row.name)
        val stateLoader = FDAViewLoader(slick.jdbc.H2Profile)(toState _)
        val stateSeq = stateLoader.fda_typedRows(StateQuery.result)(db).toSeq
        //constructed a Stream[Task,String]
        val stateStream =  fda_staticSource(stateSeq)()
        var id  = -1
        def getid: FDAUserTask[FDAROW] = row => {
          row match {
            case StateModel(stid,stname) =>   //target row type
              if (stname.contains(state)) {
                id = stid
                fda_break      //exit
              }
              else fda_skip   //take next row
            case _ => fda_skip
          }
        }
        stateStream.appendTask(getid).startRun
        id
      }
      //another conceived task for the purpose of resource consumption
      //getting id with corresponding names from COUNTIES table
      def getCountyID(state: String, county: String): Int = {
        //create a stream for county id with state name and county name
        implicit def toCounty(row:  CountyTable#TableElementType) = CountyModel(row.id,row.name)
        val countyLoader = FDAViewLoader(slick.jdbc.H2Profile)(toCounty _)
        val countySeq = countyLoader.fda_typedRows(CountyQuery.result)(db).toSeq
        //constructed a Stream[Task,String]
        val countyStream =  fda_staticSource(countySeq)()
        var id  = -1
        def getid: FDAUserTask[FDAROW] = row => {
          row match {
            case CountyModel(cid,cname) =>   //target row type
              if (cname.contains(state) && cname.contains(county)) {
                id = cid
                fda_break      //exit
              }
              else fda_skip   //take next row
            case _ => fda_skip
          }
        }
        countyStream.appendTask(getid).startRun
        id
      }
    
      //process input row and produce action row to insert into NORMAQM
      def getIdsThenInsertAction: FDAUserTask[FDAROW] = row => {
        row match {
          case aqm: AQMRPTModel =>
            if (aqm.valid) {
              val stateId = getStateID(aqm.state)
              val countyId = getCountyID(aqm.state,aqm.county)
              val action = NORMAQMQuery += NORMAQMModel(0,aqm.mid, stateId, countyId, aqm.year,aqm.value,aqm.total)
              fda_next(FDAActionRow(action))
            }
            else fda_skip
          case _ => fda_skip
        }
      }
      //runner for the action rows
      val runner = FDAActionRunner(slick.jdbc.H2Profile)
      def runInsertAction: FDAUserTask[FDAROW] = row =>
        row match {
          case FDAActionRow(action) =>
            runner.fda_execAction(action)(db)
            fda_skip
          case _ => fda_skip
        }
    
      //create parallel sources
      //get a stream of years
      val qryYears = AQMRPTQuery.map(_.year).distinct
      case class Years(year: Int) extends FDAROW
    
      implicit def toYears(y: Int) = Years(y)
    
      val yearViewLoader = FDAViewLoader(slick.jdbc.H2Profile)(toYears _)
      val yearSeq = yearViewLoader.fda_typedRows(qryYears.result)(db).toSeq
      val yearStream = fda_staticSource(yearSeq)()
    
      //strong row type
      implicit def toAQMRPT(row: AQMRPTTable#TableElementType) =
        AQMRPTModel(row.rid, row.mid, row.state, row.county, row.year, row.value, row.total, row.valid)
    
      //shared stream loader when operate in parallel mode
      val AQMRPTLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toAQMRPT _)
    
      //loading rows with year yr
      def loadRowsInYear(yr: Int) = {
        //a new query
        val query = AQMRPTQuery.filter(row => row.year === yr)
        //reuse same loader
        AQMRPTLoader.fda_typedStream(query.result)(db)(256, 256)()
      }
    
      //loading rows by year
      def loadRowsByYear: FDASourceLoader = row => {
        row match {
          case Years(y) => loadRowsInYear(y) //produce stream of the year
          case _ => fda_appendRow(FDANullRow)
        }
    
      }
    
    
      //start counter
      val cnt_start = System.currentTimeMillis()
    
      def showRecord: FDAUserTask[FDAROW] = row => {
        row match {
          case Years(y) => println(y); fda_skip
          case aqm: AQMRPTModel =>
            println(s"${aqm.year}  $aqm")
            fda_skip
          case FDAActionRow(action) =>
            println(s"${action}")
            fda_skip
          case _ => fda_skip
        }
      }
    
      //the following is a process of composition of stream combinators
      //get parallel source constructor
      val parSource = yearStream.toParSource(loadRowsByYear)
    
      //implicit val strategy = Strategy.fromCachedDaemonPool("cachedPool")
      //produce a stream from parallel sources
      val source = fda_par_source(parSource)(3)
      //turn getIdsThenInsertAction into parallel task
      val parTasks = source.toPar(getIdsThenInsertAction)
      //runPar to produce a new stream
      val actionStream =fda_runPar(parTasks)(3)
      //turn runInsertAction into parallel task
      val parRun = actionStream.toPar(runInsertAction)
      //runPar and carry out by startRun
      fda_runPar(parRun)(2).startRun
    
      println(s"processing 219400 rows parallelly  in ${(System.currentTimeMillis - cnt_start)/1000} seconds")
    
    
    
    }

     

     

     

     

     

     

     

  • 相关阅读:
    luogu P1330 封锁阳光大学
    P4817 [USACO15DEC]Fruit Feast 水果盛宴
    P2041 分裂游戏
    洛谷——P3373 【模板】线段树 2&& B 数据结构
    洛谷——P1471 方差
    洛谷——P1073 最优贸易
    洛谷——P1516 青蛙的约会
    洛谷——P1962 斐波那契数列
    洛谷——P3811 【模板】乘法逆元
    58到家数据库30条军规解读
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/6652563.html
Copyright © 2020-2023  润新知