• Scalaz(14)- Monad:函数组合-Kleisli to Reader


      Monad Reader就是一种函数的组合。在scalaz里函数(function)本身就是Monad,自然也就是Functor和applicative。我们可以用Monadic方法进行函数组合:

     1 import scalaz._
     2 import Scalaz._
     3 object decompose {
     4 //两个测试函数
     5 val f = (_: Int) + 3                              //> f  : Int => Int = <function1>
     6 val g = (_: Int) * 5                              //> g  : Int => Int = <function1>
     7 //functor
     8 val h = f map g  // f andThen g                   //> h  : Int => Int = <function1>
     9 val h1 = g map f  // f compose g                  //> h1  : Int => Int = <function1>
    10 h(2)  //g(f(2))                                   //> res0: Int = 25
    11 h1(2) //f(g(2))                                   //> res1: Int = 13
    12 //applicative
    13 val k = (f |@| g){_ + _}                          //> k  : Int => Int = <function1>
    14 k(10) // f(10)+g(10)                              //> res2: Int = 63
    15 //monad
    16 val m = g.flatMap{a => f.map(b => a+b)}           //> m  : Int => Int = <function1>
    17 val n = for {
    18   a <- f
    19   b <- g
    20 } yield a + b                                     //> n  : Int => Int = <function1>
    21 m(10)                                             //> res3: Int = 63
    22 n(10)                                             //> res4: Int = 63
    23 }

     以上的函数f,g必须满足一定的条件才能实现组合。这个从f(g(2))或g(f(2))可以看出:必需固定有一个输入参数及输入参数类型和函数结果类型必需一致,因为一个函数的输出成为另一个函数的输入。在FP里这样的函数组合就是Monadic Reader。 

    但是FP里函数运算结果一般都是M[R]这样格式的,所以我们需要对f:A => M[B],g:B => M[C]这样的函数进行组合。这就是scalaz里的Kleisli了。Kleisli就是函数A=>M[B]的类封套,从Kleisli的类定义可以看出:scalaz/Kleisli.scala

    1 final case class Kleisli[M[_], A, B](run: A => M[B]) { self =>
    2 ...
    3 trait KleisliFunctions {
    4   /**Construct a Kleisli from a Function1 */
    5   def kleisli[M[_], A, B](f: A => M[B]): Kleisli[M, A, B] = Kleisli(f)
    6 ...

    Kleisli的目的是把Monadic函数组合起来或者更形象说连接起来。Kleisli提供的操作方法如>=>可以这样理解:

    (A=>M[B]) >=> (B=>M[C]) >=> (C=>M[D]) 最终运算结果M[D]

    可以看出Kleisli函数组合有着固定的模式:

    1、函数必需是 A => M[B]这种模式;只有一个输入,结果是一个Monad M[_]

    2、上一个函数输出M[B],他的运算值B就是下一个函数的输入。这就要求下一个函数的输入参数类型必需是B

    3、M必须是个Monad;这个可以从Kleisli的操作函数实现中看出:scalaz/Kleisli.scala

     1   /** alias for `andThen` */
     2   def >=>[C](k: Kleisli[M, B, C])(implicit b: Bind[M]): Kleisli[M, A, C] =  kleisli((a: A) => b.bind(this(a))(k.run))
     3 
     4   def andThen[C](k: Kleisli[M, B, C])(implicit b: Bind[M]): Kleisli[M, A, C] = this >=> k
     5 
     6   def >==>[C](k: B => M[C])(implicit b: Bind[M]): Kleisli[M, A, C] = this >=> kleisli(k)
     7 
     8   def andThenK[C](k: B => M[C])(implicit b: Bind[M]): Kleisli[M, A, C] = this >==> k
     9 
    10   /** alias for `compose` */
    11   def <=<[C](k: Kleisli[M, C, A])(implicit b: Bind[M]): Kleisli[M, C, B] = k >=> this
    12 
    13   def compose[C](k: Kleisli[M, C, A])(implicit b: Bind[M]): Kleisli[M, C, B] = k >=> this
    14 
    15   def <==<[C](k: C => M[A])(implicit b: Bind[M]): Kleisli[M, C, B] = kleisli(k) >=> this
    16 
    17   def composeK[C](k: C => M[A])(implicit b: Bind[M]): Kleisli[M, C, B] = this <==< k

    拿操作函数>=>(andThen)举例:implicit b: Bind[M]明确了M必须是个Monad。

    kleisli((a: A) => b.bind(this(a))(k.run))的意思是先运算M[A],接着再运算k,以M[A]运算结果值a作为下一个函数k.run的输入参数。整个实现过程并不复杂。

    实际上Reader就是Kleisli的一个特殊案例:在这里kleisli的M[]变成了Id[],因为Id[A]=A >>> A=>Id[B] = A=>B,就是我们上面提到的Reader,我们看看Reader在scalaz里是如何定义的:scalar/package.scala

     1   type ReaderT[F[_], E, A] = Kleisli[F, E, A]
     2   val ReaderT = Kleisli
     3   type =?>[E, A] = Kleisli[Option, E, A]
     4   type Reader[E, A] = ReaderT[Id, E, A]
     5 
     6   type Writer[W, A] = WriterT[Id, W, A]
     7   type Unwriter[W, A] = UnwriterT[Id, W, A]
     8 
     9   object Reader {
    10     def apply[E, A](f: E => A): Reader[E, A] = Kleisli[Id, E, A](f)
    11   }
    12 
    13   object Writer {
    14     def apply[W, A](w: W, a: A): WriterT[Id, W, A] = WriterT[Id, W, A]((w, a))
    15   }
    16 
    17   object Unwriter {
    18     def apply[U, A](u: U, a: A): UnwriterT[Id, U, A] = UnwriterT[Id, U, A]((u, a))
    19   }

    type ReaderT[F[_], E, A] = Kleisli[F, E, A] >>> type Reader[E,A] = ReaderT[Id,E,A]

    好了,说了半天还是回到如何使用Kleisli进行函数组合的吧:

     1 //Kleisli款式函数kf,kg
     2 val kf: Int => Option[String] = (i: Int) => Some((i + 3).shows)
     3                                                   //> kf  : Int => Option[String] = <function1>
     4 val kg: String => Option[Boolean] = { case "3" => true.some; case _ => false.some }
     5                                                   //> kg  : String => Option[Boolean] = <function1>
     6 //Kleisli函数组合操作
     7 import Kleisli._
     8 val kfg = kleisli(kf) >=> kleisli(kg)             //> kfg  : scalaz.Kleisli[Option,Int,Boolean] = Kleisli(<function1>)
     9 kfg(1)                                            //> res5: Option[Boolean] = Some(false)
    10 kfg(0)                                            //> res6: Option[Boolean] = Some(true)

    例子虽然很简单,但它说明了很多重点:上一个函数输入的运算值是下一个函数的输入值 Int=>String=>Boolean。输出Monad一致统一,都是Option。

    那么,Kleisli到底用来干什么呢?它恰恰显示了FP函数组合的真正意义:把功能尽量细分化,通过各种方式的函数组合实现灵活的函数重复利用。也就是在FP领域里,我们用Kleisli来组合FP函数。

    下面我们就用scalaz自带的例子scalaz.example里的KleisliUsage.scala来说明一下Kleisli的具体使用方法吧:

    下面是一组地理信息结构:

    1   // just some trivial data structure ,
    2   // Continents contain countries. Countries contain cities.
    3   case class Continent(name: String, countries: List[Country] = List.empty)
    4   case class Country(name: String, cities: List[City] = List.empty)
    5   case class City(name: String, isCapital: Boolean = false, inhabitants: Int = 20)

    分别是:洲(Continent)、国家(Country)、城市(City)。它们之间的关系是层级的:Continent(Country(City))

    下面是一组模拟数据:

     1  val data: List[Continent] = List(
     2     Continent("Europe"),
     3     Continent("America",
     4       List(
     5         Country("USA",
     6           List(
     7             City("Washington"), City("New York"))))),
     8     Continent("Asia",
     9       List(
    10         Country("India",
    11           List(City("New Dehli"), City("Calcutta"))))))

    从上面的模拟数据也可以看出Continent,Country,City之间的隶属关系。我们下面设计三个函数分别对Continent,Country,City进行查找:

     1   def continents(name: String): List[Continent] =
     2     data.filter(k => k.name.contains(name))       //> continents: (name: String)List[Exercises.kli.Continent]
     3   //查找名字包含A的continent
     4   continents("A")                                 //> res7: List[Exercises.kli.Continent] = List(Continent(America,List(Country(U
     5                                                   //| SA,List(City(Washington,false,20), City(New York,false,20))))), Continent(A
     6                                                   //| sia,List(Country(India,List(City(New Dehli,false,20), City(Calcutta,false,2
     7                                                   //| 0))))))
     8   //找到两个:List(America,Asia)
     9   def countries(continent: Continent): List[Country] = continent.countries
    10                                                   //> countries: (continent: Exercises.kli.Continent)List[Exercises.kli.Country]
    11   //查找America下的国家
    12   val america =
    13       Continent("America",
    14       List(
    15         Country("USA",
    16           List(
    17             City("Washington"), City("New York")))))
    18                                                   //> america  : Exercises.kli.Continent = Continent(America,List(Country(USA,Lis
    19                                                   //| t(City(Washington,false,20), City(New York,false,20)))))
    20   countries(america)                              //> res8: List[Exercises.kli.Country] = List(Country(USA,List(City(Washington,f
    21                                                   //| alse,20), City(New York,false,20))))
    22   def cities(country: Country): List[City] = country.cities
    23                                                   //> cities: (country: Exercises.kli.Country)List[Exercises.kli.City]
    24   val usa = Country("USA",
    25             List(
    26               City("Washington"), City("New York")))
    27                                                   //> usa  : Exercises.kli.Country = Country(USA,List(City(Washington,false,20), 
    28                                                   //| City(New York,false,20)))
    29   cities(usa)                                     //> res9: List[Exercises.kli.City] = List(City(Washington,false,20), City(New Y
    30                                                   //| ork,false,20))

    从continents,countries,cities这三个函数运算结果可以看出它们都可以独立运算。这三个函数的款式如下:

    String => List[Continent]

    Continent => List[Country]

    Country => List[City]

    无论函数款式或者类封套(List本来就是Monad)都适合Kleisli。我们可以用Kleisli把这三个局部函数用各种方法组合起来实现更广泛功能:

     1   val allCountry = kleisli(continents) >==> countries
     2                                                   //> allCountry  : scalaz.Kleisli[List,String,Exercises.kli.Country] = Kleisli(<
     3                                                   //| function1>)
     4   val allCity = kleisli(continents) >==> countries >==> cities
     5                                                   //> allCity  : scalaz.Kleisli[List,String,Exercises.kli.City] = Kleisli(<functi
     6                                                   //| on1>)
     7   allCountry("Amer")                              //> res10: List[Exercises.kli.Country] = List(Country(USA,List(City(Washington,
     8                                                   //| false,20), City(New York,false,20))))
     9   allCity("Amer")                                 //> res11: List[Exercises.kli.City] = List(City(Washington,false,20), City(New 
    10                                                   //| York,false,20))

    还有个=<<符号挺有意思:

    1   def =<<(a: M[A])(implicit m: Bind[M]): M[B] = m.bind(a)(run)

    意思是用包嵌的函数flatMap一下输入参数M[A]:

    1   allCity =<< List("Amer","Asia")                 //> res12: List[Exercises.kli.City] = List(City(Washington,false,20), City(New 
    2                                                   //| York,false,20), City(New Dehli,false,20), City(Calcutta,false,20))

    那么如果我想避免使用List(),用Option[List]作为函数输出可以吗?Option是个Monad,第一步可以通过。下一步是把函数款式对齐了:

    List[String] => Option[List[Continent]]

    List[Continent] => Option[List[Country]]

    List[Country] => Option[List[City]]

    下面是这三个函数的升级版:

     1   //查找Continent List[String] => Option[List[Continent]]
     2   def maybeContinents(names: List[String]): Option[List[Continent]] =
     3     names.flatMap(name => data.filter(k => k.name.contains(name))) match {
     4        case h :: t => (h :: t).some
     5        case _ => none
     6     }                                             //> maybeContinents: (names: List[String])Option[List[Exercises.kli.Continent]]
     7                                                   //| 
     8   //测试运行
     9   maybeContinents(List("Amer","Asia"))            //> res13: Option[List[Exercises.kli.Continent]] = Some(List(Continent(America,
    10                                                   //| List(Country(USA,List(City(Washington,false,20), City(New York,false,20))))
    11                                                   //| ), Continent(Asia,List(Country(India,List(City(New Dehli,false,20), City(Ca
    12                                                   //| lcutta,false,20)))))))
    13   //查找Country  List[Continent] => Option[List[Country]]
    14   def maybeCountries(continents: List[Continent]): Option[List[Country]] =
    15     continents.flatMap(continent => continent.countries.map(c => c)) match {
    16        case h :: t => (h :: t).some
    17        case _ => none
    18     }                                             //> maybeCountries: (continents: List[Exercises.kli.Continent])Option[List[Exer
    19                                                   //| cises.kli.Country]]
    20    //查找City  List[Country] => Option[List[Country]]
    21   def maybeCities(countries: List[Country]): Option[List[City]] =
    22     countries.flatMap(country => country.cities.map(c => c)) match {
    23        case h :: t => (h :: t).some
    24        case _ => none
    25     }                                             //> maybeCities: (countries: List[Exercises.kli.Country])Option[List[Exercises.
    26                                                   //| kli.City]]
    27   
    28   val maybeAllCities = kleisli(maybeContinents) >==> maybeCountries >==> maybeCities
    29                                                   //> maybeAllCities  : scalaz.Kleisli[Option,List[String],List[Exercises.kli.Cit
    30                                                   //| y]] = Kleisli(<function1>)
    31   maybeAllCities(List("Amer","Asia"))             //> res14: Option[List[Exercises.kli.City]] = Some(List(City(Washington,false,2
    32                                                   //| 0), City(New York,false,20), City(New Dehli,false,20), City(Calcutta,false,
    33                                                   //| 20)))

    我们看到,只要Monad一致,函数输入输出类型匹配,就能用Kleisli来实现函数组合。

     

  • 相关阅读:
    用Less循环生成样式
    Angular Textarea 高度自动变化
    html文字溢出以省略号(...)替代
    mobiscroll之treelist使用
    安装Microsoft Visual C++ 2010 x64 Redistributable失败的解决方案
    获取input标签的所有属性
    checked
    js中的in-for循环
    checkbox批量选中,获取选中的项的值
    vue 订单列表 多个倒计时
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/4995916.html
Copyright © 2020-2023  润新知