问题描述:
今天CZY又找到了三个妹子,有着收藏爱好的他想要找三个地方将妹子们藏起来,将一片空地抽象成一个R行C列的表格,CZY要选出3个单元格。但要满足如下的两个条件:
(1)任意两个单元格都不在同一行。
(2)任意两个单元格都不在同一列。
选取格子存在一个花费,而这个花费是三个格子两两之间曼哈顿距离的和(如(x1,y1)和(x,y2)的曼哈顿距离为|x1-x2|+|y1-y2|)。狗狗想知道的是,花费在minT到maxT之间的方案数有多少。
答案模1000000007。所谓的两种不同方案是指:只要它选中的单元格有一个不同,就认为是不同的方案。
输入格式:
一行,4个整数,R、C、minT、maxT。3≤R,C≤4000, 1≤minT≤maxT≤20000。
对于30%的数据, 3 ≤ R, C ≤ 70。
输出格式:
一个整数,表示不同的选择方案数量模1000000007后的结果。
输入输出样例:
输入样例 |
3 3 1 20000 |
3 3 4 7 |
4 6 9 12 |
7 5 13 18 |
4000 4000 4000 14000 |
输出样例 |
6 |
0 |
264 |
1212 |
859690013 |
思路:
这题很难,上网上看了题解才明白,大体思路是: (x1,y1)和(x3,y3)构成一个矩形,但是对于一个确定的矩形边框,它的费用是一定的,就是2(x3-x1)+2(y3-y1)即矩形的边长。它对答案的贡献也是一定的,即(x3-x1-1)*(y3-y1-1)。这个矩形在r*c的大矩形中出现的次数也是给定的,设矩形长为x,宽为y,则出现了(r-x+1)*(c-y+1)次。那么枚举矩形的边长,然后就算出答案。(我觉得没说明白。)
#include<iostream> using namespace std; int r,c,mint,maxt; int main(){ cin>>r>>c>>mint>>maxt; long long ans=0; for(int i=3;i<=r;i++){ for(int j=3;j<=c;j++){//枚举矩形的长和宽 int k=(i+j-2)*2; if(k<=maxt&&k>=mint) ans+=(long long)(r-i+1)*(c-j+1)*(i-2)*(j-2)%1000000007; } } ans=(ans*6)%1000000007; cout<<ans; }