• 协方差矩阵公式推导


         已知n维随机变量(vec{X}=(X_{1},X_{2},...,X_{n}))的协方差矩阵为(C = egin{bmatrix}c_{11} & c_{12} & ... & c_{1n} \c_{21} & c_{22} & ... & c_{2n} \. & .& &.\. & .& &.\. & .& &.\c_{n1} & c_{n2} &...&c_{nn}end{bmatrix} ),其中(c_{ij} = Eig{[X_{i}-E(X_{i})][X_{j}-E(X_{j})]ig})。那么,能否将协方差矩阵写成向量形式呢?即写成和一维随机向量的方差公式类似的形式:(D(X) = E(X-E(X))^{2} )。

         我们来证明一下,设(X_{i})的样本量为m,由协方差矩阵的公式,可知:

    (C = frac{1}{m}egin{bmatrix} (X_{1}-E(X_{1}))^{T}(X_{1}-E(X_{1})) & ... & (X_{1}-E(X_{1}))^{T}(X_{n}-E(X_{n})) \ (X_{2}-E(X_{2}))^{T}(X_{1}-E(X_{1})) & ... & (X_{2}-E(X_{2}))^{T}(X_{n}-E(X_{n})) \. &. & .\. &. & .\. &. & .\ (X_{n}-E(X_{n}))^{T}(X_{1}-E(X_{1})) & ... & (X_{n}-E(X_{n}))^{T}(X_{n}-E(X_{n})) end{bmatrix} )

    (   = frac{1}{m}egin{bmatrix} (X_{1}-E(X_{1}))^{T} \ (X_{2}-E(X_{2}))^{T} \ .\. \. \ (X_{n}-E(X_{n}))^{T} end{bmatrix} egin{bmatrix} X_{1}-E(X_{1}), & X_{2}-E(X_{2}), &...,& X_{n}-E(X_{n}) end{bmatrix} )

    (   = frac{1}{m}(vec{X}-E(vec{X}))^{T}(vec{X}-E(vec{X})) )

    (   = E((vec{X}-E(vec{X}))^{T}(vec{X}-E(vec{X}))) )

         推导结果与一维随机向量的方差公式是一致的,所以,我们的猜测是正确的,证毕。

  • 相关阅读:
    LeetCode 42. Trapping Rain Water
    LeetCode 209. Minimum Size Subarray Sum
    LeetCode 50. Pow(x, n)
    LeetCode 80. Remove Duplicates from Sorted Array II
    Window10 激活
    Premiere 关键帧缩放
    AE 「酷酷的藤」特效字幕制作方法
    51Talk第一天 培训系列1
    Premiere 视频转场
    Premiere 暴徒生活Thug Life
  • 原文地址:https://www.cnblogs.com/thinkers-dym/p/4492817.html
Copyright © 2020-2023  润新知