• Project Euler 97 :Large non-Mersenne prime 非梅森大素数


    Large non-Mersenne prime

    The first known prime found to exceed one million digits was discovered in 1999, and is a Mersenne prime of the form 26972593−1; it contains exactly 2,098,960 digits. Subsequently other Mersenne primes, of the form 2p−1, have been found which contain more digits.

    However, in 2004 there was found a massive non-Mersenne prime which contains 2,357,207 digits: 28433×27830457+1.

    Find the last ten digits of this prime number.


    非梅森大素数

    1999年人们发现了第一个超过一百万位的素数,这是一个梅森素数,可以表示为26972593−1,包含有2,098,960位数字。在此之后,更多形如2p−1的梅森素数被发现,其位数也越来越多。

    然而,在2004年,人们发现了一个巨大的非梅森素数,包含有2,357,207位数字:28433×27830457+1。

    找出这个素数的最后十位数字。

    解题

    感觉很简单。。。

     JAVA

    package Level3;
    
    import java.io.BufferedReader;
    import java.io.FileReader;
    import java.io.IOException;
    import java.math.BigInteger;
    import java.util.ArrayList;
    
    
    public class PE097{
        public static void run() {
            BigInteger m = new BigInteger("10000000000");
            BigInteger r1 = new BigInteger("28433");
            BigInteger t = new BigInteger("2");
            BigInteger exp = new BigInteger("7830457");
            BigInteger res = t.modPow(exp, m);
            res = r1.multiply(res).add(new BigInteger("1"));
            res = res.mod(m);
            System.out.println(res);
        }
        public static void main(String[] args) throws IOException {
            long t0 = System.currentTimeMillis();
            run();
            long t1 = System.currentTimeMillis();
            long t = t1 - t0;
            System.out.println("running time="+t/1000+"s"+t%1000+"ms");
    
        }
    }

    // 8739992577
    // running time=0s2ms

     

    就这样

    或者这样

        public static void run2(){
            long base = 2;
            long mod = 1000000000;
            long exp = 7830457;
            long res = 28433;
            for(long i =1;i<=exp;i++){
                res = (res*2)%mod;
            }
            res +=1;
            res %=mod;
            System.out.println(res);
        }
    //    739992577
    //    running time=0s163ms

    上面mod少个0求的是后9位的数,因为多个0就越界了,少一位手工0到9可以暴力遍历。。。

    Python

    # coding=gbk
    import copy
    import time as time 
    def main():
        print ((28433*(2**7830457))+1)%10000000000
    t0 = time.time()
    main()
    t1 = time.time()
    print "running time=",(t1-t0),"s"
    # 8739992577
    # running time= 0.0190000534058 s

    也就这样

  • 相关阅读:
    web安全之XSS基础-常见编码科普
    Web安全之URL跳转科普
    防止CSRF跨站请求伪造
    Web渗透之mssql LOG备份getshell
    Web渗透之mssql2005 差异备份getshell
    Web渗透之mssql差异备份getshell
    Web安全之url跳转漏洞及bypass总结
    一次对php大马的后门的简单分析
    一些渗透测试基础面试题
    MySQL数据恢复和复制对InnoDB锁机制的影响
  • 原文地址:https://www.cnblogs.com/theskulls/p/5024164.html
Copyright © 2020-2023  润新知