题目
Segmemt Tree Build II
The structure of Segment Tree is a binary tree which each node has two attributes start
and end
denote an segment / interval.
start and end are both integers, they should be assigned in following rules:
- The root's start and end is given by
build
method. - The left child of node A has
start=A.left, end=(A.left + A.right) / 2
. - The right child of node A has
start=(A.left + A.right) / 2 + 1, end=A.right
. - if start equals to end, there will be no children for this node.
Implement a build
method with a given array, so that we can create a corresponding segment tree with every node value represent the corresponding interval max value in the array, return the root of this segment tree.
样例
Given [3,2,1,4]
. The segment tree will be:
[0, 3] (max = 4)
/
[0, 1] (max = 3) [2, 3] (max = 4)
/ /
[0, 0](max = 3) [1, 1](max = 2)[2, 2](max = 1) [3, 3] (max = 4)
说明
Segment Tree (a.k.a Interval Tree) is an advanced data structure which can support queries like:
- which of these intervals contain a given point
- which of these points are in a given interval
See wiki: Segment Tree Interval Tree
解题
理解题意:根据给的数组构建段树,该节点有区间及其该区间的最大值组成。区间的左右节点利用上面的规则计算。
/** * Definition of SegmentTreeNode: * public class SegmentTreeNode { * public int start, end, max; * public SegmentTreeNode left, right; * public SegmentTreeNode(int start, int end, int max) { * this.start = start; * this.end = end; * this.max = max * this.left = this.right = null; * } * } */
这个节点定义要好好理解。
/** * Definition of SegmentTreeNode: * public class SegmentTreeNode { * public int start, end, max; * public SegmentTreeNode left, right; * public SegmentTreeNode(int start, int end, int max) { * this.start = start; * this.end = end; * this.max = max * this.left = this.right = null; * } * } */ public class Solution { /** *@param A: a list of integer *@return: The root of Segment Tree */ public SegmentTreeNode build(int[] A) { // write your code here return build(0,A.length-1,A); } public SegmentTreeNode build(int start,int end,int[] A){ if(start > end ){ return null; } SegmentTreeNode root = new SegmentTreeNode(start,end); if( start != end){ int mid = (start + end)/2; root.left = build(start,mid,A); root.right = build(mid+1,end,A); root.max = Math.max(root.left.max,root.right.max); }else{ root.max = A[start]; } return root; } }
总耗时: 2532 ms
""" Definition of SegmentTreeNode: class SegmentTreeNode: def __init__(self, start, end, max): self.start, self.end, self.max = start, end, max self.left, self.right = None, None """ class Solution: # @oaram A: a list of integer # @return: The root of Segment Tree def build(self, A): # write your code here return self.buildX(0,len(A) - 1,A) def buildX(self,start,end,A): if start > end: return None maxX = 0 root = SegmentTreeNode(start,end) if start != end: mid = int((start + end)/2) root.left = self.buildX(start,mid,A) root.right = self.buildX(mid+1,end,A) root.max = max(root.left.max,root.right.max) else: root.max = A[start] return root
总耗时: 750 ms