• 深入理解指针—>结构体里的成员数组和指针


    单看这文章的标题,你可能会觉得好像没什么意思。你先别下这个结论,相信这篇文章会对你理解C语言有帮助。这篇文章产生的背景是在微博上,看到@Laruence同学出了一个关于C语言的题,微博链接。微博截图如下。我觉得好多人对这段代码的理解还不够深入,所以写下了这篇文章。

    zero_array

    为了方便你把代码copy过去编译和调试,我把代码列在下面:

    #include <stdio.h>
    struct str{
        int len;
        char s[0];
    };
    struct foo {
        struct str *a;
    };
    int main(int argc, char** argv) {
        struct foo f={0};
        if (f.a->s) {
            printf( f.a->s);
        }
        return 0;
    }

    你编译一下上面的代码,在VC++和GCC下都会在14行的printf处crash掉你的程序。@Laruence 说这个是个经典的坑,我觉得这怎么会是经典的坑呢?上面这代码,你一定会问,为什么if语句判断的不是f.a?而是f.a里面的数组?写这样代码的人脑子里在想什么?还是用这样的代码来玩票?不管怎么样,看过原微博的回复,我个人觉得大家主要还是对C语言理解不深,如果这算坑的话,那么全都是坑。

    接下来,你调试一下,或是你把14行的printf语句改成:

    printf("%x
    ", f.a->s);

    你会看到程序不crash了。程序输出:4。 这下你知道了,访问0x4的内存地址,不crash才怪。于是,你一定会有如下的问题:

    1)为什么不是 13行if语句出错?f.a被初始化为空了嘛,用空指针访问成员变量为什么不crash?

    2)为什么会访问到了0x4的地址?靠,4是怎么出来的?

    3)代码中的第4行,char s[0] 是个什么东西?零长度的数组?为什么要这样玩?

    让我们从基础开始一点一点地来解释C语言中这些诡异的问题。

    结构体中的成员

    首先,我们需要知道——所谓变量,其实是内存地址的一个抽像名字罢了。在静态编译的程序中,所有的变量名都会在编译时被转成内存地址。机器是不知道我们取的名字的,只知道地址。

    所以有了——栈内存区,堆内存区,静态内存区,常量内存区,我们代码中的所有变量都会被编译器预先放到这些内存区中。

    有了上面这个基础,我们来看一下结构体中的成员的地址是什么?我们先简单化一下代码:

    struct test{
        int i;
        char *p;
    };
    上面代码中,test结构中i和p指针,在C的编译器中保存的是相对地址——也就是说,他们的地址是相对于struct test的实例的。如果我们有这样的代码:

    struct test t;
    我们用gdb跟进去,对于实例t,我们可以看到:

    # t实例中的p就是一个野指针
    (gdb) p t
    $1 = {i = 0, c = 0 '00', d = 0 '00', p = 0x4003e0 "1355I211..."}
    # 输出t的地址
    (gdb) p &t
    $2 = (struct test *) 0x7fffffffe5f0
    #输出(t.i)的地址
    (gdb) p &(t.i)
    $3 = (char **) 0x7fffffffe5f0
    #输出(t.p)的地址
    (gdb) p &(t.p)
    $4 = (char **) 0x7fffffffe5f4

    我们可以看到,t.i的地址和t的地址是一样的,t.p的址址相对于t的地址多了个4。说白了,t.i 其实就是(&t + 0x0)t.p 的其实就是 (&t + 0x4)。0x0和0x4这个偏移地址就是成员i和p在编译时就被编译器给hard code了的地址。于是,你就知道,不管结构体的实例是什么——访问其成员其实就是加成员的偏移量

    下面我们来做个实验:

    struct test{
        int i;
        short c;
        char *p;
    };
    int main(){
        struct test *pt=NULL;
        return 0;
    }
    编译后,我们用gdb调试一下,当初始化pt后,我们看看如下的调试:(我们可以看到就算是pt为NULL,访问其中的成员时,其实就是在访问相对于pt的内址)

    (gdb) p pt
    $1 = (struct test *) 0x0
    (gdb) p pt->i
    Cannot access memory at address 0x0
    (gdb) p pt->c
    Cannot access memory at address 0x4
    (gdb) p pt->p
    Cannot access memory at address 0x8

    注意:上面的pt->p的偏移之所以是0x8而不是0x6,是因为内存对齐了(我在64位系统上)。关于内存对齐,可参看《深入理解C语言》一文。

    好了,现在你知道为什么原题中会访问到了0x4的地址了吧,因为是相对地址。

    相对地址有很好多处,其可以玩出一些有意思的编程技巧,比如把C搞出面向对象式的感觉来,你可以参看我正好11年前的文章《用C写面向对像的程序》(用指针类型强转的危险玩法——相对于C++来说,C++编译器帮你管了继承和虚函数表,语义也清楚了很多)

    指针和数组的差别

    有了上面的基础后,你把源代码中的struct str结构体中的char s[0];改成char *s;试试看,你会发现,在13行if条件的时候,程序因为Cannot access memory就直接挂掉了。为什么声明成char s[0],程序会在14行挂掉,而声明成char *s,程序会在13行挂掉呢?那么char *s 和 char s[0]有什么差别呢

    在说明这个事之前,有必要看一下汇编代码,用GDB查看后发现:

    • 对于char s[0]来说,汇编代码用了lea指令,lea   0x04(%rax),   %rdx
    • 对于char*s来说,汇编代码用了mov指令,mov 0x04(%rax),   %rdx

    lea全称load effective address,是把地址放进去,而mov则是把地址里的内容放进去。所以,就crash了。

    从这里,我们可以看到,访问成员数组名其实得到的是数组的相对地址,而访问成员指针其实是相对地址里的内容(这和访问其它非指针或数组的变量是一样的)

    换句话说,对于数组 char s[10]来说,数组名 s 和 &s 都是一样的(不信你可以自己写个程序试试)。在我们这个例子中,也就是说,都表示了偏移后的地址。这样,如果我们访问 指针的地址(或是成员变量的地址),那么也就不会让程序挂掉了。

    正如下面的代码,可以运行一点也不会crash掉(你汇编一下你会看到用的都是lea指令):

    struct test{
        int i;
        short c;
        char *p;
        char s[10];
    };
    int main(){
        struct test *pt=NULL;
        printf("&s = %x
    ", pt->s); //等价于 printf("%x
    ", &(pt->s) );
        printf("&i = %x
    ", &pt->i); //因为操作符优先级,我没有写成&(pt->i)
        printf("&c = %x
    ", &pt->c);
        printf("&p = %x
    ", &pt->p);
        return 0;
    }

    看到这里,你觉得这能算坑吗?不要出什么事都去怪语言,大家要想想是不是问题出在自己身上。

    关于零长度的数组

    首先,我们要知道,0长度的数组在ISO C和C++的规格说明书中是不允许的。这也就是为什么在VC++2012下编译你会得到一个警告:“arning C4200: 使用了非标准扩展 : 结构/联合中的零大小数组”。

    那么为什么gcc可以通过而连一个警告都没有?那是因为gcc 为了预先支持C99的这种玩法,所以,让“零长度数组”这种玩法合法了。关于GCC对于这个事的文档在这里:“Arrays of Length Zero”,文档中给了一个例子(我改了一下,改成可以运行的了):

    #include <stdlib.h>
    #include <string.h>
    struct line {
       int length;
       char contents[0]; // C99的玩法是:char contents[]; 没有指定数组长度
    };
    int main(){
        int this_length=10;
        struct line *thisline = (struct line *)
                         malloc (sizeof (struct line) + this_length);
        thisline->length = this_length;
        memset(thisline->contents, 'a', this_length);
        return 0;
    }

    上面这段代码的意思是:我想分配一个不定长的数组,于是我有一个结构体,其中有两个成员,一个是length,代表数组的长度,一个是contents,代码数组的内容。后面代码里的 this_length(长度是10)代表是我想分配的数据的长度。(这看上去是不是像一个C++的类?)这种玩法英文叫:Flexible Array,中文翻译叫:柔性数组。

    我们来用gdb看一下:

    (gdb) p thisline
    $1 = (struct line *) 0x601010
    (gdb) p *thisline
    $2 = {length = 10, contents = 0x601010 "
    "}
    (gdb) p thisline->contents
    $3 = 0x601014 "aaaaaaaaaa"

    我们可以看到:在输出*thisline时,我们发现其中的成员变量contents的地址居然和thisline是一样的(偏移量为0x0??!!)。但是当我们输出thisline->contents的时候,你又发现contents的地址是被offset了0x4了的,内容也变成了10个‘a’。(我觉得这是一个GDB的bug,VC++的调试器就能很好的显示)

    我们继续,如果你sizeof(char[0])或是 sizeof(int[0]) 之类的零长度数组,你会发现sizeof返回了0,这就是说,零长度的数组是存在于结构体内的,但是不占结构体的size。你可以简单的理解为一个没有内容的占位标识,直到我们给结构体分配了内存,这个占位标识才变成了一个有长度的数组。

    看到这里,你会说,为什么要这样搞啊,把contents声明成一个指针,然后为它再分配一下内存不行么?就像下面一样。

    struct line {
       int length;
       char *contents;
    };
    int main(){
        int this_length=10;
        struct line *thisline = (struct line *)malloc (sizeof (struct line));
        thisline->contents = (char*) malloc( sizeof(char) * this_length );
        thisline->length = this_length;
        memset(thisline->contents, 'a', this_length);
        return 0;
    }

    这不一样清楚吗?而且也没什么怪异难懂的东西。是的,这也是普遍的编程方式,代码是很清晰,也让人很容易理解。即然这样,那为什么要搞一个零长度的数组?有毛意义?!

    这个事情出来的原因是——我们想给一个结构体内的数据分配一个连续的内存!这样做的意义有两个好处:

    第一个意义是,方便内存释放。如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。(读到这里,你一定会觉得C++的封闭中的析构函数会让这事容易和干净很多)

    第二个原因是,这样有利于访问速度。连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)

    我们来看看是怎么个连续的,用gdb的x命令来查看:(我们知道,用struct line {}中的那个char contents[]不占用结构体的内存,所以,struct line就只有一个int成员,4个字节,而我们还要为contents[]分配10个字节长度,所以,一共是14个字节)

    (gdb) x /14b thisline
    0x601010:       10      0       0       0       97      97      97      97
    0x601018:       97      97      97      97      97      97

    从上面的内存布局我们可以看到,前4个字节是 int length,后10个字节就是char contents[]。

    如果用指针的话,会变成这个样子:

    (gdb) x /16b thisline
    0x601010:       1       0       0       0       0       0       0       0
    0x601018:       32      16      96      0       0       0       0       0
    (gdb) x /10b this->contents
    0x601020:       97      97      97      97      97      97      97      97
    0x601028:       97      97

    上面一共输出了四行内存,其中,

    • 第一行前四个字节是 int length,第一行的后四个字节是对齐。
    • 第二行是char* contents,64位系统指针8个长度,他的值是0x20 0x10 0x60 也就是0x601020。
    • 第三行和第四行是char* contents指向的内容。

    从这里,我们看到,其中的差别——数组的原地就是内容,而指针的那里保存的是内容的地址

    后记

    好了,我的文章到这里就结束了。但是,请允许我再唠叨两句。

    1)看过这篇文章,你觉得C复杂吗?我觉得并不简单。某些地方的复杂程度不亚于C++。

    2)那些学不好C++的人一定是连C都学不好的人。连C都没学好,你们根本没有资格鄙视C++。

    3)当你们在说有坑的时候,你得问一下自己,是真有坑还是自己的学习能力上出了问题。

    如果你觉得你的C语言还不错,欢迎你看看《C语言的谜题》还有《谁说C语言很简单?》还有《语言的歧义》以及《深入理解C语言》一文。

  • 相关阅读:
    博弈论专题(持续更新)
    数论专题(持续更新)
    树的遍历专题(持续更新)
    直线折线分割平面问题
    字典树模板 HDU1251
    差分数组——面对大数据的处理
    最短路——dijkstra算法
    并查集与最小生成树
    KMP的初步认识及题目分析
    Codeforces Round#636(Div.3) D题 差分数组
  • 原文地址:https://www.cnblogs.com/tham/p/6827260.html
Copyright © 2020-2023  润新知