• 有趣的数学问题-鸽巢原理


    鸽巢原理,也称抽屉原理。形象地说明一下:假设有n个鸽笼,有kn+1只鸽子,将所有的鸽子都放入笼子里,那么至少有一个笼子最少装有k+1只鸽子。

    常见形式:

    1、把多于n+1只鸽子放到n个笼子里,则至少有一个笼子里不少于两只鸽子。

    2、把多于m*n只鸽子放到n个笼子里,则至少有一个笼子里有不少于m+1只鸽子。

    3、把m*n-1只鸽子放到n个笼子中,其中必须有一个笼子至多有m-1只鸽子。

    相关趣味数学题:

    1)同一年出生的400人中至少有2个人的生日相同。

    2) 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理。

    从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔)、(兔、熊猫)、(兔、长颈鹿)、(熊猫、熊猫)、(熊猫、长颈鹿)、(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据形式1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同。

    3) 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

    能构成34的偶数对为(4,30)、(6,28)、(8,26)、(10,24)、(12,22)、(14,20)、(16,18)共7对,这样还剩下一个2无法组队。取9个数,假如取2,剩下的数便从7个偶数对中选取8个,将偶数对看作抽屉,选取的8个数看作物品,类似于形式1。所以任意选9个数,必有两个数之和为34。

    4) 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。

    分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质):
    {1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。
    从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。

    5)某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

    共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次。不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况。把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

    6)15个网球分成数量不同的4堆,数量最多的一堆至少有多少个球?

    15可分拆多少种4个互不相同的整数之和,而15=1+2+3+9=1+2+4+8=1+2+5+7=1+3+4+7=1+3+5+6=2+3+4+6,所以最多一堆的球数可能是9、8、7、6,其中至少有6个。

    7)证明:任取8个自然数,必有两个数的差是7的倍数。

    在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数。根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同。我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉。任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。

    8)对于任意的五个自然数,证明其中必有3个数的和能被3整除。

    任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉:【0】、【1】、【2】

    若这五个自然数除以3后所得余数分别分布在这3个抽屉中(即抽屉中分别为含有余数为0,1,2的数),我们从这三个抽屉中各取1个(如1~5中取3,4,5),其和(3+4+5=12)必能被3整除。

    若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉至少包含有3个余数(抽屉原理),即一个抽屉包含1个余数,另一个包含4个,或者一个包含2个余数另一个抽屉包含3个。从余数多的那个抽屉里选出三个余数,其代数和或为0,或为3,或为6,均为3的倍数,故所对应的3个自然数之和是3的倍数。

    若这5个余数分布在其中的一个抽屉中,很显然,从此抽屉中任意取出三个余数,同情况②,余数之和可被3整除,故其对应的3个自然数之和能被3整除。

    9)任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数。

    注意到这些数除以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9]。若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数。

    10)正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同。

    正方形有6个面 由最多[(m-1)÷n]+1,得出[(6-1)÷2]+1=[2.5]+1=3。

    11)有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

    首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

    12)木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色不相同,则最少要取出多少个球?

    把3种颜色看作3个抽屉,要符合题意,则小球的数目必须大于7,故至少取出8个小球才能符合要求。

    13)一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?

    点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。

    14)11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。

    若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。

    15)有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。

    设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。

    16)一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的?

    根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,但还要加上大小怪,所以当抽取第15张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色。

  • 相关阅读:
    解决 搭建Jekins过程中 启动Tomcat的java.net.UnknownHostException异常
    射手和农场主
    java 和 JS(javaScript)中的反斜杠正则转义
    分享修改密码的SharePoint Web part: ITaCS Change Password web part
    分享微软官方Demo用的SharePoint 2010, Exchange 2010, Lync 2010虚拟机
    Office 365 的公共网站的一些限制及解决的办法
    SharePoint 2013 关闭 customErrors
    安装 KB2844286 导致SharePoint 2010 XSLT web part 显示出现错误
    安装Office Web Apps Server 2013 – KB2592525安装失败
    如何将hyper-v虚拟机转换成vmware的虚拟机- 转换SharePoint 2010 Information Worker Demonstration and Evaluation Virtual Machine (SP1)
  • 原文地址:https://www.cnblogs.com/tgycoder/p/5364305.html
Copyright © 2020-2023  润新知