pd.read_csv("../data/user_info.csv", index_col="name") #假设csv里包含这几列: name, age, birth, sex
data="name,age,birth,sex
Tom,18.0,2000-02-10,
Bob,30.0,1988-10-17,male"
print(data)
pd.read_csv(StringIO(data))#从 StringIO 对象中读取。
data = "name|age|birth|sex~Tom|18.0|2000-02-10|~Bob|30.0|1988-10-17|male"
pd.read_csv(StringIO(data), sep="|", lineterminator="~") #自定义字段之间的分隔符
pd.read_csv(StringIO(data), sep="|", lineterminator="~", dtype={"age": int}) # 自己指定数据类型
data="Tom,18.0,2000-02-10,
Bob,30.0,1988-10-17,male"
pd.read_csv(StringIO(data), names=["name", "age", "birth", "sex"]) csv文件并没有标题,我们可以设置参数 names 来添加标题。
pd.read_csv(StringIO(data), usecols=["name", "age"]) # 只读取部分列
print(user_info.to_json()) #将dataframe转成json字符串
格式类型 | 数据描述 | Reader | Writer |
text |
CSV |
read_csv |
to_csv |
text |
JSON |
read_json |
to_json |
text |
HTML |
read_html |
to_html |
text |
clipboard |
read_clipboard |
to_clipboard |
binary |
Excel |
read_excel |
to_excel |
binary |
HDF5 |
read_hdf |
to_hdf |
binary |
Feather |
read_feather |
to_feather |
binary |
Msgpack |
read_msgpack |
to_msgpack |
binary |
Stata |
read_stata |
to_stata |
binary |
SAS |
read_sas |
|
binary |
Python Pickle |
read_pickle |
to_pickle |
SQL |
SQL |
read_sql |
to_sql |
SQL |
Google Big Query |
read_gbq |
to_gbq |
to_json |
split |
字典像索引 - > [索引],列 - > [列],数据 - > [值]} |
records |
列表像{[列 - >值},…,{列 - >值}] |
index |
字典像{索引 - > {列 - >值}} |
columns |
字典像{列 - > {索引 - >值}} |
values |
只是值数组 |