• 用R语言代写模拟随机服务排队系统


    原文链接:http://tecdat.cn/?p=8159 

     

    M / M / c / k系统

    用肯德尔的表示法,M / M / c / k系统具有指数到达(M / M / c / k),cC具有指数服务时间(M / M / c / k)和k−c的服务器(M / M / c / k)ķ-C队列中的位置(M / M / c / k)。 

    这是M / M / 2/3系统 的模拟。 

    lambda <- 3
    mu <- 4
    
    m.queue <- trajectory() %>%
      seize("server", amount=1) %>%
      timeout(function() rexp(1, mu)) %>%
      release("server", amount=1)
    
    mm23.env <- simmer() %>%
      add_resource("server", capacity=2, queue_size=1) %>%
      add_generator("arrival", m.queue, function() rexp(1, lambda)) %>%
      run(until=2000)

    队列已满时会有拒绝。

    通过求解该系统的平衡方程,可以得出以下信息:

    其中r=λ/μ[R=λ/μ。最后,我们可以看到模拟如何快速收敛到系统中的理论平均客户数Nñ:

     服务费率

    在许多实际的排队方案中,服务器的速度取决于系统的状态。在这里,我们考虑一个多服务器资源,该资源能够在到达位置之间平均分配处理能力。这意味着,例如,如果capacity=2服务器中有一个服务器到达,则服务器的服务速度将提高一倍。

    •  start:到达开始最后一个timeout活动的模拟时间。
    • multiplier:分配处理能力。
    • delay:服务延迟应用于上一个timeout活动。

    下面的主要轨迹首先抓住了服务器并初始化了这三个属性。然后,到达者需要遵循update.delay轨迹,并且必须在任何给定时间中断以重新运行它,从而重新计算剩余的服务时间。 

    在下文中,我们将M / M / 2与该状态相关系统进行比较。这两个系统的到达时间相同,并且可以预期,平均资源使用量显着降低。

    排队网络

     队列网络。

    有三个指数生成器 注入平均大小为100字节的指数大小的消息。有四个M / D / 1队列,确定速率等于220字节/秒。来自λ的消息有25%的概率1个λ1个 在第二个队列之前删除 。 

    我们将首先设置主要常量和几个函数来设置消息大小并占用M / D / 1队列:

    下一步是 设置三个连接点:

    最后,我们 运行仿真环境:

    
      run(4000)
    #> simmer environment: anonymous | now: 4000 | next: 4000.27679472528
    #> { Monitor: in memory }
    #> { Resource: md1_1 | monitored: TRUE | server status: 1(1) | queue status: 4(Inf) }
    #> { Resource: md1_2 | monitored: TRUE | server status: 1(1) | queue status: 4(Inf) }
    #> { Resource: md1_3 | monitored: TRUE | server status: 0(1) | queue status: 0(Inf) }
    #> { Resource: md1_4 | monitored: TRUE | server status: 0(1) | queue status: 0(Inf) }
    #> { Source: arrival1_ | monitored: 2 | n_generated: 7994 }
    #> { Source: arrival3_ | monitored: 2 | n_generated: 1959 }
    #> { Source: arrival4_ | monitored: 2 | n_generated: 2390 }

    在分析中,我们将过滤来自生成器1的到达队列3和4的到达,并检查平均等待时间和消息总数:

    
    
    aggregate(waiting_time ~ generator + resource, arr, function(x) sum(x)/length(x))
    #>   generator resource waiting_time
    #> 1  arrival1    md1_3    6.2313118
    #> 2  arrival3    md1_3    0.7253215
    #> 3  arrival1    md1_4    5.6431528
    #> 4  arrival4    md1_4    0.5001096
    get_n_generated(env, "arrival1_") + get_n_generated(env, "arrival4_")
    #> [1] 10384
    aggregate(waiting_time ~ generator + resource, arr, length)
    #>   generator resource waiting_time
    #> 1  arrival1    md1_3         3864
    #> 2  arrival3    md1_3         1958
    #> 3  arrival1    md1_4         2177
    #> 4  arrival4    md1_4         2389
     

    如果您有任何疑问,请在下面发表评论。 

  • 相关阅读:
    The Triangle_DP
    LITTLE SHOP OF FLOWERS_DP
    K Best(最大化平均数)_二分搜索
    Number Game_状态压缩
    Stockbroker Grapevine_Floyd
    A very hard Aoshu problem
    AOE 网络
    AOV网
    最小生成树
    [POJ] 1562 Oil Deposits (DFS)
  • 原文地址:https://www.cnblogs.com/tecdat/p/11760583.html
Copyright © 2020-2023  润新知