• P1295 [TJOI2011]书架


    题目链接

    题意分析

    其实关于这道题的话 最下面的题意概括已经说的很明了

    关于这道题 我们的第一想法是DP

    \(f_i\)表示已经分好了前\(i\)个数字的最小代价 我们枚举k作为一段\([k,j]\)的开头进行转移

    \[f_i=min\{f_{k-1}+\max_{j=k}^ih_j\}(\sum_{j=k}^ih_j≤m) \]

    暴力的话 \(O(n^2)\) 而且\(n≤10^5\) 所以我们需要考虑优化

    我们要提一个十分重要的结论

    当前枚举到了\(i\)的时候 如果把\(i\)作为定点 同时定义

    \[hm_k=\max_{j=k}^ih_j\ \ \ \ z_k=f_{k-1}+\max_{j=k}^ih_j \]

    为了防止混乱 一定要时时刻刻明白一点 \(f_i\)是以\(i\)为右端点 而\(hm_k\)以及\(z_k\)都是以\(k\)为左端点

    首先我们可以明白 从\(1\)\(i\) \(hm_k\)是单减不增的

    所以 我们加入一个\(h_i\)之后的话 存在一个临界点x 使得\(hm_x≥h_i\)

    这个临界点\(x\)之后的\(hm_k\)都会被更新

    由于存在单调性 所以我们可以二分出这个位置 然后使用区间赋值操作进行修改

    同时对于当前的\(i\) 其答案就是

    \[\max_{j=1}^iz_j \]

    等等! 二分 区间赋值 区间查询最值 这不就是线段树的骚操作?

    我们使用线段树维护三样东西 \(f_i\)的最小值 \(hm_i\)的最大值 \(f_i+hm_{i+1}\)的最小值

    首先 我们使用尺取法枚举当前的合法区间\([l,r]\) 保证

    \[\sum_{j=l}^rh_j≤m \]

    同时按照上面所说 加入\(h_r\) 对于之前维护的答案产生影响并加以修改

    然后将\(h_{r+1}\)插入线段树中 用以作为\(f_r+hm_{r+1}\)维护答案

    最后到\(n\)的时候 就是查询

    \[\max_{i=1}^n{f_i+hm_i} \]

    CODE:

    #include<bits/stdc++.h>
    #define N 800010
    #define INF 2147483600
    using namespace std;
    int n,m;
    struct Node
    {
    	int m1,m2,m3;
    	int tag;
    }tre[N];
    int num[N];
    void pushup(int now)
    {
    	tre[now].m1=min(tre[now<<1].m1,tre[now<<1|1].m1);
    	tre[now].m2=max(tre[now<<1].m2,tre[now<<1|1].m2);
    	tre[now].m3=min(tre[now<<1].m3,tre[now<<1|1].m3);
    }
    void down(int now)
    {
    	if(tre[now].tag)
    	{
    		tre[now<<1].m2=tre[now].tag;
    		tre[now<<1].m3=tre[now<<1].m1+tre[now].tag;
    		tre[now<<1].tag=tre[now].tag;
    		tre[now<<1|1].m2=tre[now].tag;
    		tre[now<<1|1].m3=tre[now<<1|1].m1+tre[now].tag;
    		tre[now<<1|1].tag=tre[now].tag;
    		tre[now].tag=0;
    	}
    }
    void insert(int now,int le,int ri,int pos,int fi,int hi)
    {
    	if(le==ri) 
    	{
    		tre[now].m1=fi;
    		tre[now].m2=hi;
    		tre[now].m3=fi+hi;
    		return;
    	}
    	int mid=(le+ri)>>1;down(now);
    	if(pos<=mid) insert(now<<1,le,mid,pos,fi,hi);
    	else insert(now<<1|1,mid+1,ri,pos,fi,hi);
    	pushup(now);
    }
    void update(int now,int lenow,int rinow,int le,int ri,int d)
    {
    	if(le<=lenow&&rinow<=ri)
    	{
    		tre[now].m2=d;
    		tre[now].m3=tre[now].m1+d;
    		tre[now].tag=d;
    		return;
    	}
    	int mid=(lenow+rinow)>>1;down(now);
    	if(le<=mid) update(now<<1,lenow,mid,le,ri,d);
    	if(mid<ri) update(now<<1|1,mid+1,rinow,le,ri,d);
    	pushup(now);
    }
    int getdp(int now,int lenow,int rinow,int le,int ri)
    {
    	if(le<=lenow&&rinow<=ri) return tre[now].m3;
    	int mid=(lenow+rinow)>>1,tmp=INF;down(now);
    	if(le<=mid) tmp=min(tmp,getdp(now<<1,lenow,mid,le,ri));
    	if(mid<ri) tmp=min(tmp,getdp(now<<1|1,mid+1,rinow,le,ri));
    	return tmp;
    }
    int geth(int now,int lenow,int rinow,int le,int ri)
    {
    	if(le<=lenow&&rinow<=ri) return tre[now].m2;
    	int mid=(lenow+rinow)>>1,tmp=0;down(now);
    	if(le<=mid) tmp=max(tmp,geth(now<<1,lenow,mid,le,ri));
    	if(mid<ri) tmp=max(tmp,geth(now<<1|1,mid+1,rinow,le,ri));
    	return tmp;
    }
    int getat(int lenow,int rinow,int k)
    {
    	int le=lenow,ri=rinow+1,ans=rinow+1;
    	while(le<ri)
    	{
    //		printf("now is %d %d\n",le,ri);
    		int mid=(le+ri)>>1;
    		if(geth(1,1,n,mid,rinow)<k) ans=ri=mid;
    		else le=mid+1;
    	}
    	return ans;
    }
    int main()
    {
    	scanf("%d%d",&n,&m);
    	for(int i=1;i<=n;++i) scanf("%d",&num[i]);
    	int nowsum=0;insert(1,1,n,1,0,num[1]);
    	for(int l=1,r=1;r<=n;++r)
    	{
    		nowsum+=num[r];
    //		printf("now is %d\n",r);
    		while(nowsum>m) nowsum-=num[l++];
    		int tmp=getat(l,r-1,num[r]);
    		if(tmp<r) update(1,1,n,tmp,r-1,num[r]);
    		int nowtmp=getdp(1,1,n,l,r);
    		if(r==n) printf("%d\n",nowtmp);
    		else insert(1,1,n,r+1,nowtmp,num[r+1]); 
    	}
    	return 0;
    }
    
  • 相关阅读:
    lambda表达式——sort和compare进行高级排序
    guava包的应用总结
    ffmpeg源码编译安装(Compile ffmpeg with source) Part 1 : 通用部分
    Notes : <Hands-on ML with Sklearn & TF> Chapter 4
    Notes : <Hands-on ML with Sklearn & TF> Chapter 3
    scxml-1
    redis
    Async Actions using Coroutines(异步行为使用协程,协同程序)
    Pass additional arguments during initialization and/or construction
    Wraping legacy code
  • 原文地址:https://www.cnblogs.com/tcswuzb/p/14361155.html
Copyright © 2020-2023  润新知