• codeforces 547E. Mike and Friends(后缀数组+线段树)


    题目链接

    E. Mike and Friends
    time limit per test3 seconds
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    What-The-Fatherland is a strange country! All phone numbers there are strings consisting of lowercase English letters. What is double strange that a phone number can be associated with several bears!

    In that country there is a rock band called CF consisting of n bears (including Mike) numbered from 1 to n.

    Phone number of i-th member of CF is si. May 17th is a holiday named Phone Calls day. In the last Phone Calls day, everyone called all the numbers that are substrings of his/her number (one may call some number several times). In particular, everyone called himself (that was really strange country).

    Denote as call(i, j) the number of times that i-th member of CF called the j-th member of CF.

    The geek Mike has q questions that he wants to ask you. In each question he gives you numbers l, r and k and you should tell him the number

    Input
    The first line of input contains integers n and q (1 ≤ n ≤ 2 × 105 and 1 ≤ q ≤ 5 × 105).

    The next n lines contain the phone numbers, i-th line contains a string si consisting of lowercase English letters ().

    The next q lines contain the information about the questions, each of them contains integers l, r and k (1 ≤ l ≤ r ≤ n and 1 ≤ k ≤ n).

    Output
    Print the answer for each question in a separate line.

    Examples
    input
    5 5
    a
    ab
    abab
    ababab
    b
    1 5 1
    3 5 1
    1 5 2
    1 5 3
    1 4 5
    output
    7
    5
    6
    3
    6

    题意:给出 (n) 个字符串, (q) 个询问 (l,r,k) ,询问 ([l,r]) 的字符串中包含多少个 (k) 串作为字串。

    题解:这题看了别人的博客,感觉做法非常暴力,没想到线段树可以这么用。

    以下是粘贴的部分:

    将字符串拼接起来,求一次后缀数组,求后缀数组时保存每个字符属于哪个串,每个串的起始位置,然后我们以 (sa) 数组作为下标建立线段树,线段树每个节点代表的区间,保存这个区间内每个字符属于哪个串,然后排序

    对于一个询问包含的串 (k),找到 (k) 的起点在 (sa) 上的位置,我们可以二分其在 (sa) 数组上能延伸的最左端点以及最右端点,使得这之间的所有串与 (k)(lcp) 都等于 (k) 的串长。然后我们只要在线段树内统计编号大于等于 (l) 且小于等于 (r) 的数个数就好了,这个我们只要在每个被完全包含的区间内二分答案,然后累加即可。

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<vector>
    #include<queue>
    #include<stack>
    using namespace std;
    #define rep(i,a,n) for (int i=a;i<n;i++)
    #define per(i,a,n) for (int i=n-1;i>=a;i--)
    #define pb push_back
    #define fi first
    #define se second
    #define dbg(...) cerr<<"["<<#__VA_ARGS__":"<<(__VA_ARGS__)<<"]"<<endl;
    typedef vector<int> VI;
    typedef long long ll;
    typedef pair<int,int> PII;
    const int inf=0x3fffffff;
    const ll mod=1000000007;
    const int maxn=2e5+10;
    /*
     *suffix array
     *倍增算法  O(n*logn)
     *待排序数组长度为n,放在0~n-1中,在最后面补一个0
     *build_sa( ,n+1,m+1); //注意是n+1,m是s数组中的最大值;
     *getHeight(,n);
     *例如:
     
     *n   = 8;
     *num[]   = { 1, 1, 2, 1, 1, 1, 1, 2, $ };注意num最后一位为0,其他大于0
     *rank[]  = { 4, 6, 8, 1, 2, 3, 5, 7, 0 };rank[0~n-1]为有效值,rank[n]必定为0无效值
     *sa[]    = { 8, 3, 4, 5, 0, 6, 1, 7, 2 };sa[1~n]为有效值,sa[0]必定为n是无效值
     *height[]= { 0, 0, 3, 2, 3, 1, 2, 0, 1 };height[2~n]为有效值
     *
     */
    int sa[maxn*2];//SA数组,表示将S的n个后缀从小到大排序后把排好序的
    //的后缀的开头位置顺次放入SA中
    int t1[maxn*2],t2[maxn*2],c[maxn*2];//求SA数组需要的中间变量,不需要赋值
    int rk[maxn*2],height[maxn*2];
    //待排序的字符串放在s数组中,从s[0]到s[n-1],长度为n,且最大值小于m,
    //除s[n-1]外的所有s[i]都大于0,r[n-1]=0
    //函数结束以后结果放在sa数组中
    void build_sa(int s[],int n,int m)
    {
        int i,j,p,*x=t1,*y=t2;
        //第一轮基数排序,如果s的最大值很大,可改为快速排序
        for(i=0;i<m;i++)c[i]=0;
        for(i=0;i<n;i++)c[x[i]=s[i]]++;
        for(i=1;i<m;i++)c[i]+=c[i-1];
        for(i=n-1;i>=0;i--)sa[--c[x[i]]]=i;
        for(j=1;j<=n;j<<=1)
        {
            p=0;
            //直接利用sa数组排序第二关键字
            for(i=n-j;i<n;i++)y[p++]=i;//后面的j个数第二关键字为空的最小
            for(i=0;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j;
            //这样数组y保存的就是按照第二关键字排序的结果
            //基数排序第一关键字
            for(i=0;i<m;i++)c[i]=0;
            for(i=0;i<n;i++)c[x[y[i]]]++;
            for(i=1;i<m;i++)c[i]+=c[i-1];
            for(i=n-1;i>=0;i--)sa[--c[x[y[i]]]]=y[i];
            //根据sa和x数组计算新的x数组
            swap(x,y);
            p=1;x[sa[0]]=0;
            for(i=1;i<n;i++)
                x[sa[i]]=y[sa[i-1]]==y[sa[i]] && y[sa[i-1]+j]==y[sa[i]+j]?p-1:p++;
            if(p>=n)break;
            m=p;//下次基数排序的最大值
        }
    }
    void getHeight(int s[],int n)
    {
        int i,j,k=0;
        for(i=0;i<=n;i++) rk[sa[i]]=i;
        for(i=0;i<n;i++)
        {
            if(k)k--;
            j=sa[rk[i]-1];
            while(s[i+k]==s[j+k])k++;
            height[rk[i]]=k;
        }
    }
    int cnt;
    char s[maxn];
    int a[maxn*2],st[maxn],sz[maxn];
    int bl[maxn*2];
    VI seg[maxn*8];
    void build(int i,int l,int r)
    {
        seg[i].clear();
        rep(j,l,r+1) seg[i].pb(bl[sa[j]]);
        sort(seg[i].begin(),seg[i].end());
        if(l==r) return;
        int m=(l+r)/2;
        build(i*2,l,m);
        build(i*2+1,m+1,r);
    }
    int query(int i,int l,int r,int L,int R,int x,int y)
    {
        if(l==L&&r==R)
        {
            int t1=lower_bound(seg[i].begin(),seg[i].end(),x)-seg[i].begin()-1;
            int t2=lower_bound(seg[i].begin(),seg[i].end(),y+1)-seg[i].begin()-1;
            return t2-t1;
        }
        int m=(L+R)/2;
        if(r<=m) return query(i*2,l,r,L,m,x,y);
        else if(l>m) return query(i*2+1,l,r,m+1,R,x,y);
        else return query(i*2,l,m,L,m,x,y)+query(i*2+1,m+1,r,m+1,R,x,y);
    }
    
    int d[maxn*2][19];
    void init_RMQ(int n)
    {
        for(int i=1;i<=n;i++) d[i][0]=height[i];
        for(int k=1;(1<<k)<=n;k++)
            for(int i=0;i+(1<<k)<=n;i++)
                d[i][k]=min(d[i][k-1],d[i+(1<<(k-1))][k-1]);
    }
    int query(int l,int r)
    {
        int k=0;
        while(1<<(k+1)<=r-l+1) k++;
        return min(d[l][k],d[r-(1<<k)+1][k]);
    }
    int lcp(int l,int r)
    {
        if(l==r) return cnt-sa[l];
    
        if(l>r) swap(l,r);
        if(l+1==r) return height[r];
        else return query(l+1,r);
    }
    
    int getr(int x,int k)
    {
        int l=x,r=cnt;
        int ans=-1;
        while(l<=r)
        {
            int m=(l+r)/2;
            if(lcp(m,x)>=k)
            {
                ans=m;
                l=m+1;
            }
            else r=m-1;
        }
        return ans;
    }
    
    int getl(int x,int k)
    {
        int l=1,r=x;
        int ans=-1;
        while(l<=r)
        {
            int m=(l+r)/2;
            if(lcp(m,x)>=k)
            {
                ans=m;
                r=m-1;
            }
            else l=m+1;
        }
        return ans;
    }
    
    int main()
    {
        int n,q;
        scanf("%d%d",&n,&q);
        int mx='z'-'a'+2;
        cnt=0;
        rep(i,1,n+1)
        {
            scanf("%s",s);
            int l=(int)strlen(s);
            sz[i]=l;
            st[i]=cnt;
            rep(j,0,l)
            {
                a[cnt]=s[j]-'a'+1;
                bl[cnt]=i;
                cnt++;
            }
            if(i<n)
                a[cnt]=mx++,bl[cnt++]=n+1;
        }
        a[cnt]=0,bl[cnt]=n+1;
        
        build_sa(a,cnt+1,mx+2);
        getHeight(a,cnt);
        
        build(1,1,cnt);
        init_RMQ(cnt);
        while(q--)
        {
            int l,r,k;
            scanf("%d%d%d",&l,&r,&k);
            int t=sz[k];
            k=rk[st[k]];
            int fl=getl(k,t),fr=getr(k,t);
            int ans=query(1,fl,fr,1,cnt,l,r);
            printf("%d
    ",ans);
        }
        
        return 0;
    }
    
    
  • 相关阅读:
    Block深入浅出
    JSPatch 遇上swift
    iPhone左下角app图标
    Handoff使用指南
    实习任务——导出excel
    实习任务——对查询结果进行筛选过滤
    Markdown基本语法
    学习笔记(二)——类加载及执行顺序
    #学习笔记(一)——static
    写给过去的3年,拥抱2016
  • 原文地址:https://www.cnblogs.com/tarjan/p/7450457.html
Copyright © 2020-2023  润新知