• Elasticsearch 7.4.0官方文档操作


    官方文档地址

    https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

    1.0.0 设置Elasticsearch

    1.1.0 安装Elasticsearch

    1.1.1 Linux安装Elasticsearch

    Linux下,非Docker启动Elasticsearch 6.3.0,安装ik分词器插件,以及使用Kibana测试Elasticsearch

    1.1.2 Docker安装Elasticsearch

    Linux使用Docker启动Elasticsearch并配合Kibana使用,安装ik分词器

    2.0.0 Elasticsearch入门

    2.1.0 索引文档

    添加文档,请求体是JSON格式

    PUT /customer/_doc/1
    {
      "name": "John Doe"
    }
    
    • 这里添加了索引customer 类型_doc 文档id1 添加文档内容{"name": "John Doe"}
    • 索引不存在,则自动创建
    • 这是新文档,所以文档版本是1
    {
      "_index" : "customer",
      "_type" : "_doc",
      "_id" : "1",
      "_version" : 1,
      "result" : "created",
      "_shards" : {
        "total" : 2,
        "successful" : 1,
        "failed" : 0
      },
      "_seq_no" : 0,
      "_primary_term" : 1
    }
    

    获取文档

    GET /customer/_doc/1
    

    结果

    {
      "_index" : "customer",
      "_type" : "_doc",
      "_id" : "1",
      "_version" : 1,
      "_seq_no" : 0,
      "_primary_term" : 1,
      "found" : true,
      "_source" : {
        "name" : "John Doe"
      }
    }
    
    

    批量插入,使用关键字_bulk索引为bank
    把下面三个点换成accounts.json

    POST /bank/_bulk
    ...
    

    查看插入的数据量

    GET /_cat/indices?v
    

    查看数据

    2.2.0 开始搜索

    按照account_number进行升序,检索bank索引的全部文档

    GET /bank/_search
    {
      "query": { "match_all": {} },
      "sort": [
        { "account_number": "asc" }
      ]
    }
    

    默认显示前10个文档hits

    {
      "took" : 138,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 1000,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [
          {
            "_index" : "bank",
            "_type" : "_doc",
            "_id" : "0",
            "_score" : null,
            "_source" : {
              "account_number" : 0,
              "balance" : 16623,
              "firstname" : "Bradshaw",
              "lastname" : "Mckenzie",
              "age" : 29,
              "gender" : "F",
              "address" : "244 Columbus Place",
              "employer" : "Euron",
              "email" : "bradshawmckenzie@euron.com",
              "city" : "Hobucken",
              "state" : "CO"
            },
            "sort" : [
              0
            ]
          },
          {
            "_index" : "bank",
            "_type" : "_doc",
            "_id" : "1",
            "_score" : null,
            "_source" : {
              "account_number" : 1,
              "balance" : 39225,
              "firstname" : "Amber",
              "lastname" : "Duke",
              "age" : 32,
              "gender" : "M",
              "address" : "880 Holmes Lane",
              "employer" : "Pyrami",
              "email" : "amberduke@pyrami.com",
              "city" : "Brogan",
              "state" : "IL"
            },
            "sort" : [
              1
            ]
          },...
    
    • took搜索花费时间 单位:毫秒ms
    • timed_out搜索是否超时
    • _shards搜索了多少分片,成功,失败,跳过的分片数
    • max_score找到的最相关的文档的分数
    • hits.total.value匹配多少文档
    • hits.sort文档的排序位置
    • hits._score文档的相关性分数(在使用时不适用match_all)

    分页查询from size
    跳过前5个文档,然后再往下查找十个文档

    GET /bank/_search
    {
      "query": { "match_all": {} },
      "sort": [
        { "account_number": "asc" }
      ],
      "from": 5,
      "size": 10
    }
    

    条件查询match
    默认进行分词 查找有关milllane的词
    匹配19个

    GET /bank/_search
    {
      "query": { "match": { "address": "mill lane" } }
    }
    

    短语搜索match_phrase
    查找有关mill lane的短语
    匹配1个

    GET /bank/_search
    {
      "query": { "match_phrase": { "address": "mill lane" } }
    }
    

    多条件查找bool
    must都满足 must_not都不满足 should满足任何一个
    默认按照相关性分数排序
    在索引bank中查找age=40 and state!='ID'的文档

    GET /bank/_search
    {
      "query": {
        "bool": {
          "must": [
            { "match": { "age": "40" } }
          ],
          "must_not": [
            { "match": { "state": "ID" } }
          ]
        }
      }
    }
    

    过滤器filter
    查找20000<=balance<=30000

    GET /bank/_search
    {
      "query": {
        "bool": {
          "must": { "match_all": {} },
          "filter": {
            "range": {
              "balance": {
                "gte": 20000,
                "lte": 30000
              }
            }
          }
        }
      }
    }
    

    2.3.0 使用聚合分析结果

    terms分组,聚合名称group_by_state
    对字段state进行分组,降序返回账户最多的10种

    GET /bank/_search
    {
      "size": 0,
      "aggs": {
        "group_by_state": {
          "terms": {
            "field": "state.keyword"
          }
        }
      }
    }
    

    结果

    • size=0所以hits不显示内容
    • 聚合默认是前10条,默认按照分组文档数量降序
    {
      "took" : 2,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 1000,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "group_by_state" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 743,
          "buckets" : [
            {
              "key" : "TX",
              "doc_count" : 30
            },
            {
              "key" : "MD",
              "doc_count" : 28
            },
            {
              "key" : "ID",
              "doc_count" : 27
            },
            {
              "key" : "AL",
              "doc_count" : 25
            },
            {
              "key" : "ME",
              "doc_count" : 25
            },
            {
              "key" : "TN",
              "doc_count" : 25
            },
            {
              "key" : "WY",
              "doc_count" : 25
            },
            {
              "key" : "DC",
              "doc_count" : 24
            },
            {
              "key" : "MA",
              "doc_count" : 24
            },
            {
              "key" : "ND",
              "doc_count" : 24
            }
          ]
        }
      }
    }
    
    

    avg计算平均数
    对分组的每项数据计算balance平均值

    GET /bank/_search
    {
      "size": 0,
      "aggs": {
        "group_by_state": {
          "terms": {
            "field": "state.keyword"
          },
          "aggs": {
            "average_balance": {
              "avg": {
                "field": "balance"
              }
            }
          }
        }
      }
    }
    

    结果,添加了一个我们自定义的字段average_balance用来存放平均值

    ...
    {
      "key" : "TX",
      "doc_count" : 30,
      "average_balance" : {
    	"value" : 26073.3
      }
    },
    ...
    

    order排序
    对分组的balance计算平均值,并按照平均值进行降序

    GET /bank/_search
    {
      "size": 0,
      "aggs": {
        "group_by_state": {
          "terms": {
            "field": "state.keyword",
            "order": {
              "average_balance": "desc"
            }
          },
          "aggs": {
            "average_balance": {
              "avg": {
                "field": "balance"
              }
            }
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "group_by_state" : {
          "doc_count_error_upper_bound" : -1,
          "sum_other_doc_count" : 827,
          "buckets" : [
            {
              "key" : "CO",
              "doc_count" : 14,
              "average_balance" : {
                "value" : 32460.35714285714
              }
            },
            {
              "key" : "NE",
              "doc_count" : 16,
              "average_balance" : {
                "value" : 32041.5625
              }
            },
            {
              "key" : "AZ",
              "doc_count" : 14,
              "average_balance" : {
                "value" : 31634.785714285714
              }
            },
    ...
    

    3.0.0 映射

    • 映射类型,元字段 _index _type _id _source
    • 字段类型
      • 简单的 text keyword date long double boolean ip
      • 层级关系的 object nested
      • 特殊的 geo_point geo_shape completion

    创建索引my-index
    并创建字段age email name类型分别是integer keyword text

    PUT /my-index
    {
      "mappings": {
        "properties": {
          "age":    { "type": "integer" },  
          "email":  { "type": "keyword"  }, 
          "name":   { "type": "text"  }     
        }
      }
    }
    

    添加字段到已存在的索引
    添加字段employee-idmy-index索引并设置类型keyword
    设置"index": false使字段不能被检索

    PUT /my-index/_mapping
    {
      "properties": {
        "employee-id": {
          "type": "keyword",
          "index": false
        }
      }
    }
    
    • 更新映射的字段
    • 不能更新现有字段的映射,以下情况除外
      • 添加新propertiesobject类型的字段
      • 使用field映射参数已启用multi-fields
      • 更改ignore_above映射参数
    • 更新现有字段会使数据失效,如果想改字段的映射,可以创建一个正确映射的索引并重新导入数据
    • 如果只选重命名字段的话,可以使用alias字段

    查看映射

    GET /my-index/_mapping
    

    结果

    {
      "my-index" : {
        "mappings" : {
          "properties" : {
            "age" : {
              "type" : "integer"
            },
            "email" : {
              "type" : "keyword"
            },
            "employee-id" : {
              "type" : "keyword",
              "index" : false
            },
            "name" : {
              "type" : "text"
            }
          }
        }
      }
    }
    

    查看一个或多个字段的映射
    查看多个可以使用GET /my-index/_mapping/field/employee-id,age

    GET /my-index/_mapping/field/employee-id
    

    结果

    {
      "my-index" : {
        "mappings" : {
          "employee-id" : {
            "full_name" : "employee-id",
            "mapping" : {
              "employee-id" : {
                "type" : "keyword",
                "index" : false
              }
            }
          }
        }
      }
    }
    

    3.1.0 删除映射类型

    • 什么是映射类型
      • 一个索引可以有多个类型
      • 每个类型可以有自动的字段
      • 不同类型可以有相同字段
      • 同索引不同类型可以是父子关系

    下面表示在twitter索引的user tweet类型中查找字段user_namekimchy的文档

    GET twitter/user,tweet/_search
    {
      "query": {
        "match": {
          "user_name": "kimchy"
        }
      }
    }
    
    • 为什么要删除映射类型
      • 因为同索引不同类型同字段定义的映射需要相同
      • 有可能不同类型同字段,但字段类型不同,会干扰Lucene的高效压缩文档的能力
    • 替换映射类型
      • 每个文档类型设置不同索引
        • 可以设置A索引,设置B索引,这样同字段类型就不会发生冲突
        • 将较少文档的索引设置主分片少,文档多的索引设置主分片多

    7.0.0及其以后不建议使用指定类型的文档,将使用_doc作为类型
    添加或定义映射时,数据类型默认为_doc

    PUT toopo
    {
      "mappings": {
        "properties": {
          "distance": {
            "type": "long"
          },
          "transit_mode": {
            "type": "keyword"
          }
        }
      }
    }
    

    添加了映射vc 文档类型_doc 添加了_id为1 也可以不指定id随机生成
    并且添加了字段c 创建了自动映射

    POST vc/_doc/1
    {
      "c":22
    }
    

    添加了索引pan并添加两个文档 文档的_id随机
    添加了字段foo 会自动创建字段类型
    如果想执行_id可以使用{ "index" : {"_id":"1"} }

    POST pan/_bulk
    { "index" : {} }
    { "foo" : "baz" }
    { "index" : {} }
    { "foo" : "qux" }
    

    3.2.0 映射参数

    以下参数对于某些或所有字段数据类型是通用的

    • analyzer
    • normalizer
    • boost
    • coerce
    • copy_to
    • doc_values
    • dynamic
    • enabled
    • fielddata
    • eager_global_ordinals
    • format
    • ignore_above
    • ignore_malformed
    • index_options
    • index_phrases
    • index_prefixes
    • index
    • fields
    • norms
    • null_value
    • position_increment_gap
    • properties
    • search_analyzer
    • similarity
    • store
    • term_vector

    3.2.1 analyzer

    设置分词器,仅限于text类型,默认使用standard
    例如设置字段cx使用ik分词器

    PUT nx
    {
      "mappings": {
        "properties": {
          "cx":{
            "type": "text",
            "analyzer": "ik_max_word"
          }
        }
      }
    }
    

    可以测试分词的情况

    GET nx/_analyze
    {
      "field": "cx",
      "text": ["我的热情"]
    }
    

    结果

    {
      "tokens" : [
        {
          "token" : "我",
          "start_offset" : 0,
          "end_offset" : 1,
          "type" : "CN_CHAR",
          "position" : 0
        },
        {
          "token" : "的",
          "start_offset" : 1,
          "end_offset" : 2,
          "type" : "CN_CHAR",
          "position" : 1
        },
        {
          "token" : "热情",
          "start_offset" : 2,
          "end_offset" : 4,
          "type" : "CN_WORD",
          "position" : 2
        }
      ]
    }
    
    

    3.2.2 coerce

    它用来设置是否支持字段类型自动转换,默认为true 表示可以

    • 添加文档1则可以成功,文档2则不可以添加,因为"10"不是integer类型
    PUT my_index
    {
      "mappings": {
        "properties": {
          "number_one": {
            "type": "integer"
          },
          "number_two": {
            "type": "integer",
            "coerce": false
          }
        }
      }
    }
    
    PUT my_index/_doc/1
    {
      "number_one": "10" 
    }
    
    PUT my_index/_doc/2
    {
      "number_two": "10" 
    }
    

    全局设置禁用"index.mapping.coerce": false

    • 因为文档字段number_one设置了true所以文档1可以添加,文档2则不可以添加
    PUT my_index
    {
      "settings": {
        "index.mapping.coerce": false
      },
      "mappings": {
        "properties": {
          "number_one": {
            "type": "integer",
            "coerce": true
          },
          "number_two": {
            "type": "integer"
          }
        }
      }
    }
    
    PUT my_index/_doc/1
    { "number_one": "10" } 
    
    PUT my_index/_doc/2
    { "number_two": "10" } 
    

    3.2.3 copy_to

    可以将一个字段的内容传递给另外一个字段
    在实际文档1的_source中字段c还是不存在,只存在a b字段
    但是这里查询字段c含有JohnSmith单词可以查找到

    PUT my_index
    {
      "mappings": {
        "properties": {
          "a": {
            "type": "text",
            "copy_to": "c" 
          },
          "b": {
            "type": "text",
            "copy_to": "c" 
          },
          "c": {
            "type": "text"
          }
        }
      }
    }
    
    PUT my_index/_doc/1
    {
      "a": "John",
      "b": "Smith"
    }
    
    GET my_index/_search
    {
      "query": {
        "match": {
          "c": { 
            "query": "John Smith",
            "operator": "and"
          }
        }
      }
    }
    
    • 不会修改原始_source中的值,只会在检索分析中存在
    • 可以支持一个字段到多个字段"copy_to": ["b","c"]
    • 不支持继承特性,例如字段a设置了"copy_to":"b",字段b设置了"copy_to":"c",检索分析过程中c中无a值,只有b

    3.2.4 doc_values

    如果不需要对字段排序 聚合 脚本就可以禁用它,节省空间
    默认为true启用

    • 这里虽然设置了false 但还可以查询
    PUT my_index
    {
      "mappings": {
        "properties": {
          "a": { 
            "type":       "keyword"
          },
          "b": { 
            "type":       "keyword",
            "doc_values": false
          }
        }
      }
    }
    

    3.2.5 dynamic

    • 动态添加了索引,字段,映射类型
    PUT my_index/_doc/1 
    {
      "username": "johnsmith",
      "name": {
        "first": "John",
        "last": "Smith"
      }
    }
    
    PUT my_index/_doc/2 
    {
      "username": "marywhite",
      "email": "mary@white.com",
      "name": {
        "first": "Mary",
        "middle": "Alice",
        "last": "White"
      }
    }
    
    • dynamic的值
    • true默认,可以将新字段自动添加并字段设置映射类型
    • false可以将新字段添加到_source中,但这个字段不可用于检索,除非重新删除索引,重新定义映射
    • strict不可以添加新字段,除非重新删除索引,重新定义映射

    这里文档1,2,4都可以添加成功,但是文档4的"b4"字段用来检索也检索不到,因为映射没有添加b4 当然更没有添加b33

    PUT my_index
    {
      "mappings": {
        "dynamic": false, 
        "properties": {
          "a": { 
            "properties": {
              "b1": {"type": "text"},
              "b2": { 
                "dynamic": true,
                "properties": {}
              },
              "b3": { 
                "dynamic": "strict",
                "properties": {}
              }
            }
          }
        }
      }
    }
    
    POST my_index/_doc/1
    {
      "a":{
        "b1":"are you ok"
      }
    }
    POST my_index/_doc/2
    {
      "a":{
        "b2":{
          "b22":"are you ok"
        }
      }
    }
    POST my_index/_doc/3
    {
      "a":{
        "b3":{
          "b33":"are you ok"
        }
      }
    }
    POST my_index/_doc/4
    {
      "a":{
        "b4":"are you ok"
      }
    }
    

    3.2.6 enabled

    适用于类型object的字段,设置为false之后
    可以以任何类型添加数据,数据都会被储存在_source

    PUT my_index
    {
      "mappings": {
        "properties": {
          "a": { 
            "type": "object",
            "enabled": false
          },
          "b":{"type": "integer"}
        }
      }
    }
    
    PUT my_index/_doc/1
    {
      "a": { 
        "arbitrary_object": {
          "some_array": [ "foo", "bar", { "baz": 2 } ]
        }
      },
      "b":1
    }
    
    PUT my_index/_doc/2
    {
      "a": "none",
      "b":2
    }
    
    PUT my_index/_doc/3
    {
      "a": 3,
      "b":3
    }
    

    可以以查询不禁用字段来在_source中显示,或者以查询全部来查询出来或以_id值来查询

    GET my_index/_search
    {
      "query": {
        "match": {
          "b": 1
        }
      }
    }
    
    GET my_index/_search
    
    GET my_index/_doc/2
    

    查询映射可知,它不会储存在映射中

    GET my_index/_mapping
    

    结果

    {
      "my_index" : {
        "mappings" : {
          "properties" : {
            "a" : {
              "type" : "object",
              "enabled" : false
            },
            "b" : {
              "type" : "integer"
            }
          }
        }
      }
    }
    
    

    可以设置全部禁用

    PUT my_index
    {
      "mappings": {
        "enabled": false 
      }
    }
    
    • 可以在全部禁用的索引里面添加任何字段,每个字段可以添加任何类型
    PUT my_index/_doc/session_1
    {
      "user_id": "kimchy",
      "session_data": {
        "arbitrary_object": {
          "some_array": [ "foo", "bar", { "baz": 2 } ]
        }
      },
      "last_updated": "2015-12-06T18:20:22"
    }
    
    • 只能以查找全部或者_id来查询出数据
    GET my_index/_search
    
    GET my_index/_doc/session_1
    
    • 查看映射
    GET my_index/_mapping
    

    结果

    {
      "my_index" : {
        "mappings" : {
          "enabled" : false
        }
      }
    }
    

    3.2.7 fielddate

    用于字段类型text
    因为text不可以用于排序 聚合操作
    如果想用也可以,需要进行设置

    • 设置"fielddata": true
    • 直接使用my_field即可
    PUT my_index/_mapping
    {
      "properties": {
        "my_field": { 
          "type":     "text",
          "fielddata": true
        }
      }
    }
    
    • 设置"fields": {"keyword": {"type": "keyword"}}
    • 使用my_field.keyword来替换my_field的使用
    PUT my_index
    {
      "mappings": {
        "properties": {
          "my_field": { 
            "type": "text",
            "fields": {
              "keyword": { 
                "type": "keyword"
              }
            }
          }
        }
      }
    }
    

    3.2.8 format

    ELasticsearch会将传入的date类型解析为一个long值,是UTC的毫秒数

    • format自定义date数据格式 也可以表示为 yyyy-MM-dd HH:mm:ss
    PUT my_index
    {
      "mappings": {
        "properties": {
          "date": {
            "type":   "date",
            "format": "yyyy-MM-dd"
          }
        }
      }
    }
    

    3.2.9 ignore_above

    用于字符串来设置限定长度,如果大于长度会储存在_source但不可以被检索,聚合

    PUT my_index
    {
      "mappings": {
        "properties": {
          "a": {
            "type": "keyword",
            "ignore_above": 3 
          }
        }
      }
    }
    
    PUT my_index/_doc/1 
    {
      "a": "aaa"
    }
    
    PUT my_index/_doc/2
    {
      "a": "aaaa"
    }
    

    可以使用查找全部或指定_id找到

    GET my_index/_search
    
    GET my_index/_doc/2
    

    查询,聚合,排序则不可以,测试聚合

    GET my_index/_search 
    {
      "aggs": {
        "a_name": {
          "terms": {
            "field": "a"
          }
        }
      }
    }
    

    结果

    {
      "took" : 68,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : 1.0,
        "hits" : [
          {
            "_index" : "my_index",
            "_type" : "_doc",
            "_id" : "1",
            "_score" : 1.0,
            "_source" : {
              "a" : "aaa"
            }
          },
          {
            "_index" : "my_index",
            "_type" : "_doc",
            "_id" : "2",
            "_score" : 1.0,
            "_source" : {
              "a" : "aaaa"
            }
          }
        ]
      },
      "aggregations" : {
        "a_name" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "aaa",
              "doc_count" : 1
            }
          ]
        }
      }
    }
    

    3.2.10 ignore_malformed

    忽略格式错误的数据传入,默认false

    • 文档1可以执行,文档2不可以执行
    • 在查询中不可以指定查询格式错误的数据
    PUT my_index
    {
      "mappings": {
        "properties": {
          "a": {
            "type": "integer",
            "ignore_malformed": true
          },
          "b": {
            "type": "integer"
          }
        }
      }
    }
    
    PUT my_index/_doc/1
    {
      "a": "foo" 
    }
    
    PUT my_index/_doc/2
    {
      "b": "foo" 
    }
    

    全局设置,这里字段a可以插入错误的数据,b则不可以插入错误的数据

    PUT my_index
    {
      "settings": {
        "index.mapping.ignore_malformed": true 
      },
      "mappings": {
        "properties": {
          "a": { 
            "type": "byte"
          },
          "b": {
            "type": "integer",
            "ignore_malformed": false 
          }
        }
      }
    }
    

    注意

    • ignore_malformed不可以用于nested object range数据类型

    3.2.11 index

    • 检索true 不检索false 默认为true
    • 不检索的字段不可被查询

    3.2.12 fields

    可以把String类型的字段映射为text类型,也可以映射为keyword类型

    • 添加字段city类型为text 内部字段raw类型keyword
    • 可以使用city用于全文检索,也可以使用city.raw实现排序,聚合操作
    PUT my_index
    {
      "mappings": {
        "properties": {
          "city": {
            "type": "text",
            "fields": {
              "raw": { 
                "type":  "keyword"
              }
            }
          }
        }
      }
    }
    
    PUT my_index/_doc/1
    {
      "city": "New York"
    }
    
    PUT my_index/_doc/2
    {
      "city": "York"
    }
    
    GET my_index/_search
    {
      "query": {
        "match": {
          "city": "york" 
        }
      },
      "sort": {
        "city.raw": "asc" 
      },
      "aggs": {
        "Cities": {
          "terms": {
            "field": "city.raw" 
          }
        }
      }
    }
    

    多字段

    • 添加字段atext类型,默认使用standard分词器,
    • 在字段a里面嵌套了一个字段b,也是text类型,使用english分词器
    PUT my_index
    {
      "mappings": {
        "properties": {
          "a": { 
            "type": "text",
            "fields": {
              "b": { 
                "type":     "text",
                "analyzer": "english"
              }
            }
          }
        }
      }
    }
    
    PUT my_index/_doc/1
    { "a": "quick brown fox" } 
    
    PUT my_index/_doc/2
    { "a": "quick brown foxes" } 
    

    查找在字段a 和 字段a.b 中内容为quick brown foxes的文档
    "type": "most_fields" 可以设置相关性得分相加

    GET my_index/_search
    {
      "query": {
        "multi_match": {
          "query": "quick brown foxes",
          "fields": [ 
            "a",
            "a.b"
          ],
          "type": "most_fields" 
        }
      }
    }
    

    3.2.13 norms

    对于仅用于筛选或聚合的字段设置
    norms设置为false后表示不对其评分
    也可以使用PUT对现有字段进行设置normsfalse
    一旦设置为false后就不可再改为true

    • 设置字段a不进行评分
    PUT my_index/_mapping
    {
      "properties": {
        "a": {
          "type": "text",
          "norms": false
        }
      }
    }
    

    3.2.14 null_value

    一个null值不能被检索
    当字段设置null时,或者设置为空数组,或者数组中的值都为null时,则当做该字段没有值
    需要与字段的类型相同,例如:不可以使用long字段类型设置"null_value": "xxx"
    它只可以影响检索却不能影响到元文档

    • 下面设置了字段a如果为null的话,可以使用xxx代替检索该字段为null值的文档
    • 检索结果为文档1,3,4 因为检索时会把为null的值看出xxx 空数组不包含任何,所以不会被检索到
    PUT my_index
    {
      "mappings": {
        "properties": {
          "a": {
            "type":"keyword",
            "null_value": "xxx" 
          }
        }
      }
    }
    
    PUT my_index/_doc/1
    {
      "a": null
    }
    
    PUT my_index/_doc/2
    {
      "a": [] 
    }
    
    PUT my_index/_doc/3
    {
      "a": [null] 
    }
    
    PUT my_index/_doc/4
    {
      "a": [null,1] 
    }
    
    GET my_index/_search
    {
      "query": {
        "term": {
          "a": "xxx" 
        }
      }
    }
    

    3.2.15 properties

    适用于类型object nested的字段,可以添加任何数据类型
    同索引不同字段下可以有进行不同的设置,可以使用PUT来为字段添加新属性

    • 创建索引时定义
    • 使用PUT添加或更新映射类型时定义
    • 添加新字段的文档进行动态定义

    定义managerobject类型,定义employeesnested类型

    PUT my_index
    {
      "mappings": {
        "properties": { 
          "manager": {
            "properties": { 
              "age":  { "type": "integer" },
              "name": { "type": "text"  }
            }
          },
          "employees": {
            "type": "nested",
            "properties": { 
              "age":  { "type": "integer" },
              "name": { "type": "text"  }
            }
          }
        }
      }
    }
    
    PUT my_index/_doc/1 
    {
      "region": "US",
      "manager": {
        "name": "Alice White",
        "age": 30
      },
      "employees": [
        {
          "name": "John Smith",
          "age": 34
        },
        {
          "name": "Peter Brown",
          "age": 26
        }
      ]
    }
    

    点符号,可以用于检索和聚合等

    • 必须知道内字段的完整路径
    GET my_index/_search
    {
      "query": {
        "match": {
          "manager.name": "Alice White"
        }
      },
      "aggs": {
        "Employees": {
          "nested": {
            "path": "employees"
          },
          "aggs": {
            "Employee Ages": {
              "histogram": {
                "field": "employees.age",
                "interval": 5
              }
            }
          }
        }
      }
    }
    

    3.2.16 store

    设置字段为true 默认false 可以在检索结果的_source中只显示这些字段

    • 查询结果的文档只显示两个属性title date
    PUT my_index
    {
      "mappings": {
        "properties": {
          "title": {
            "type": "text",
            "store": true 
          },
          "date": {
            "type": "date",
            "store": true 
          },
          "content": {
            "type": "text"
          }
        }
      }
    }
    
    PUT my_index/_doc/1
    {
      "title":   "Some short title",
      "date":    "2015-01-01",
      "content": "A very long content field..."
    }
    
    GET my_index/_search
    {
      "stored_fields": [ "title", "date", "content" ] 
    }
    

    3.3.0 动态映射

    • 创建了哪些东西
    • 索引data
    • 创建了一个_id"1"文档
    • 创建了字段类型为long的字段count 并添加了值为5
    PUT data/_doc/1 
    { "count": 5 }
    

    3.3.1 动态字段映射

    默认情况下是支持动态映射的,因为dynamic默认为true
    除非你设置了objectdynamicfalse或者strict

    • 默认映射的类型
    • null不会添加任何字段
    • truefalse -> boolean
    • 有小数的话 -> float
    • 整数类型 -> long
    • 对象 -> object
    • 数组 -> 取决于第一个不是null的值
    • 字符串 -> 通过日期检测date 通过数字检测double``long 其他的为text keyword

    3.3.0 元字段

    • _index文档所属的索引
    • _type文档的映射类型
    • _id文档编号
    • _source文档正文的原始JSON
    • _size文档的_source提供的字段大小,单位:字节
    • _field_names文档中包含非空值的所有字段
    • _ignored由于导致索引时间被忽略的文档中的所有字段
    • _routing一个自定义的路由值,用于将文档路由到特定的分片
    • _meta特定于应用程序的元数据

    3.3.1 _id

    每个文档都有一个_id唯一标识它的索引

    • 指定文档id添加了文档1,文档2
    • 使用terms来根据字段元字段_id来批量匹配
    PUT my_index/_doc/1
    {
      "text": "Document with ID 1"
    }
    
    PUT my_index/_doc/2
    {
      "text": "Document with ID 2"
    }
    
    GET my_index/_search
    {
      "query": {
        "terms": {
          "_id": [ "1", "2" ] 
        }
      }
    }
    

    3.3.2 _index

    • 添加索引1index_1文档1,索引2index_2文档2
    • 在索引1,索引2中查询元字段_indexindex_1 index_2
    • 并聚合按照_index进行分组,取前十条数据并按照_index进行升序
    PUT index_1/_doc/1
    {
      "text": "Document in index 1"
    }
    
    PUT index_2/_doc/2
    {
      "text": "Document in index 2"
    }
    
    
    GET index_1,index_2/_search
    {
      "query": {
        "terms": {
          "_index": ["index_1", "index_2"] 
        }
      },
      "aggs": {
        "indices": {
          "terms": {
            "field": "_index", 
            "size": 10
          }
        }
      },
      "sort": [
        {
          "_index": { 
            "order": "asc"
          }
        }
      ]
    }
    

    3.3.3 _meta

    Elasticsearch不会使用这些元数据,例如可以存文档所属的类

    • 添加元数据
    PUT my_index
    {
      "mappings": {
        "_meta": { 
          "class": "MyApp::User",
          "version": {
            "min": "1.0",
            "max": "1.3"
          }
        }
      }
    }
    
    • 查询元数据
    GET my_index/_mapping
    
    • 修改元数据
    PUT my_index/_mapping
    {
      "_meta": {
        "class": "MyApp2::User3",
        "version": {
          "min": "1.3",
          "max": "1.5"
        }
      }
    }
    

    3.3.4 _routing

    • 创建_routing的文档
    PUT my_index/_doc/1?routing=user1
    {
      "title": "This is a document"
    }
    
    • 查找具有_routing的文档,必须要知道_routing的值
    GET my_index/_doc/1?routing=user1 
    
    • 使用_routing字段进行查询
    GET my_index/_search
    {
      "query": {
        "terms": {
          "_routing": [ "user1" ] 
        }
      }
    }
    
    • 指定多个路由值查询
    GET my_index/_search?routing=user1,user2 
    {
      "query": {
        "match": {
          "title": "document"
        }
      }
    }
    
    • 如果设置了_routingtrue时,在插入数据时必须指定路由值,否则异常
    PUT my_index2
    {
      "mappings": {
        "_routing": {
          "required": true 
        }
      }
    }
    
    PUT my_index2/_doc/1 
    {
      "text": "No routing value provided"
    }
    

    3.3.5 _source

    包括原JSON文档,如果在_source中存在的字段在映射中不存在,则认为该字段不可被检索

    3.3.6 _type

    已经废除,现在使用_doc代表默认的文档类型

    3.4.0 字段数据类型

    核心数据类型

    • 字符串
      • text keyword
    • 数值类型
      • long integer short byte double float half_float scaled_float
    • 日期类型
      • date
    • 日期纳秒
      • date_nanos
    • 布尔类型
      • boolean
    • 二进制
      • binary
    • 范围
      • integer_range float_range long_range double_range date_range

    复杂数据类型

    • 单个json对象
      object
    • 数组JSON对象
      nested

    地理数据类型

    • 地理位置
      • geo_point纬度/经度积分
    • 地理形状
      • geo_shape用于多边形等复杂形状

    专业数据类型

    • ip表示IPv4 IPv6地址
    • completion提供自动完成建议
    • token_count计算字符串中令牌的数量
    • murmur3在索引时计算值的哈希并将其存储在索引中
    • annotated-text索引包含特殊标记的文本(通常用于标识命名实体)
    • percolator接受来自查询 dsl 的查询
    • join定义同一索引内文档的父/子关系
    • rank_feature记录数字功能,以提高查询时的点击率
    • rank_features记录数字功能,以提高查询时的点击率。
    • dense_vector记录浮点值的密集矢量
    • sparse_vector记录浮点值的稀疏矢量
    • search_as_you_type针对查询优化的文本字段,以实现按类型完成
    • alias为现有字段定义别名
    • flattened允许将整个 JSON 对象索引为单个字段
    • shape用于任意笛卡尔几何

    数组

    • 在Elasticsearch中不需要定义专业的数组字段类型,任何字段都可以包含一个或多个值,数组中必须具有相同的值

    多字段

    • 一个String字段的text类型可以用于全文检索,keyword类型则用于排序,聚合,可以使用分词器进行检索

    3.4.1 Alias

    别名限制

    • 目标需要是具体字段,而不是对象或者其他的别名
    • 创建别名,目标字段需要存在
    • 如果定义了嵌套对象,别名也有其功能
    • 不能定义多个字段使用同一个别名

    添加别名

    • 添加了字段distance的别名route_length_miles
    PUT trips
    {
      "mappings": {
        "properties": {
          "distance": {
            "type": "long"
          },
          "route_length_miles": {
            "type": "alias",
            "path": "distance" 
          },
          "transit_mode": {
            "type": "keyword"
          }
        }
      }
    }
    

    不可以使用别名进行POST添加数据,要使用原字段

    POST trips/_doc
    {
      "distance":58
    }
    
    POST trips/_bulk
    {"index":{}}
    {"distance":88}
    

    使用别名查询

    GET /trips/_search
    {
      "query": {
        "range" : {
          "route_length_miles" : {
            "gte" : 39
          }
        }
      }
    }
    

    不能用于哪些关键字
    一般情况下别名可以用于很多地方,查询,聚合,排序,但是下列字段不允许
    copy_to _source term geo_shape more_like_this

    3.4.2 Arrays

    在Elasticsearch中,没有专业的数组类型,默认任何字段都可以包含零个或多个值,但是数组中的所有值需要有相同的数据类型,例如

    • 字符串数组 [ "one", "two" ]
    • 整数数组 [ 1, 2 ]
    • 数组的数组 [ 1, [ 2, 3 ]] 相同于 [ 1, 2, 3 ]
    • 对象数组 [ { "name": "Mary", "age": 12 }, { "name": "John", "age": 10 }]

    注意事项

    • 对象数组无法正常工作,无法独立于数组中其他对象而被检索,需要使用字段类型nested而不是object
    • 动态添加字段是,数组的第一个值确定后,后面的要与之对应,至少要保证可以强制转换为相同的数据类型
    • 数组可以含有null值,这些null值也可以替换为已配置的null_value或跳过,空数组会认为缺失字段-没有值的字段
    PUT my_index/_doc/1
    {
      "message": "some arrays in this document...",
      "tags":  [ "elasticsearch", "wow" ], 
      "lists": [ 
        {
          "name": "prog_list",
          "description": "programming list"
        },
        {
          "name": "cool_list",
          "description": "cool stuff list"
        }
      ]
    }
    
    PUT my_index/_doc/2 
    {
      "message": "no arrays in this document...",
      "tags":  "elasticsearch",
      "lists": {
        "name": "prog_list",
        "description": "programming list"
      }
    }
    
    GET my_index/_search
    {
      "query": {
        "match": {
          "tags": "elasticsearch" 
        }
      }
    }
    

    3.4.3 Binary

    传入二进制的Base64编码,并且不能含有换行符 ,默认不储存,不可检索

    PUT my_index
    {
      "mappings": {
        "properties": {
          "name": {
            "type": "text"
          },
          "blob": {
            "type": "binary"
          }
        }
      }
    }
    
    PUT my_index/_doc/1
    {
      "name": "Some binary blob",
      "blob": "U29tZSBiaW5hcnkgYmxvYg==" 
    }
    

    字段参数

    • doc_values默认true 设置false可以节省空间,但不可以用于排序 聚合 脚本,但可以用于查询
    • store默认false 设置true可以检索只显示true的字段,和_source差不多用于过滤显示hits中_source字段

    3.4.4 Boolean

    • 布尔类型
    • false "false"
    • true "true"

    在检索的时候使用true"true"都是一样的结果
    但是如果你添加了"false" 则在_source中显示也为"false"

    • 在聚合terms的时候
      • false
        • key0
        • key_as_string"false"
      • true
        • key1
        • key_as_string"true"
    POST my_index/_doc/1
    {
      "is_published": true
    }
    
    POST my_index/_doc/2
    {
      "is_published": false
    }
    
    GET my_index/_search
    {
      "aggs": {
        "publish_state": {
          "terms": {
            "field": "is_published"
          }
        }
      }
    }
    

    参数

    • doc_values默认true 设置false可以节省空间,但不可以用于排序 聚合 脚本,但可以用于查询
    • index默认true 设置false使此字段不可被检索
    • null_value设置一个值在检索的时候来替换null
    • store默认false 设置true可以检索只显示true的字段,和_source差不多用于过滤显示hits中_source字段

    3.4.5 Date

    日期类型,可以使用format参数来指定类型,还可以使用||符号来写多个日期格式

    • 定义多个日期类型,插入数据时都不匹配就报错
    PUT my_index
    {
      "mappings": {
        "properties": {
          "date": {
            "type":   "date",
            "format": "yyyy-MM-dd HH:mm:ss SSS||yyyy-MM-dd HH:mm:ss||yyyy-MM-dd"
          }
        }
      }
    }
    

    format也可以使用now表示系统时间,也可以使用日期数学

    • +1h加1小时
    • -1d减去一天
    • /d四舍五入到最近一天
      日期参数
    • 如果now2001-01-01 12:00:00
      now+1h 表示为2001-01-01 13:00:00

    参数

    • doc_values默认true 设置false可以节省空间,但不可以用于排序 聚合 脚本,但可以用于查询
    • format默认strict_date_optional_time||epoch_millis 也可以自定义格式yyyy-MM-dd HH:mm:ss||yyyy-MM-dd
    • idnex默认true 设置false使此字段不可被检索
    • null_value设置一个值在检索的时候来替换null
    • store默认false 设置true可以检索只显示true的字段,和_source差不多用于过滤显示hits中_source字段

    3.4.6 Flattened

    拼合数据类型
    应该不被全文检索,因为它的所有值都可作为关键字
    在检索期间,所有值都作为字符串进行检索,不需要对数字类型,日期类型进行特殊处理

    • 插入数据
    PUT bug_reports
    {
      "mappings": {
        "properties": {
          "title": {
            "type": "text"
          },
          "labels": {
            "type": "flattened"
          }
        }
      }
    }
    
    POST bug_reports/_doc/1
    {
      "title": "Results are not sorted correctly.",
      "labels": {
        "priority": "urgent",
        "release": ["v1.2.5", "v1.3.0"],
        "timestamp": {
          "created": 1541458026,
          "closed": 1541457010
        }
      }
    }
    
    • 在整个对象的全部值中查找"urgent"
    POST bug_reports/_search
    {
      "query": {
        "term": {"labels": "urgent"}
      }
    }
    
    • 如果想查找特定的类型可以使用点符号
    POST bug_reports/_search
    {
      "query": {
        "term": {"labels.release": "v1.3.0"}
      }
    }
    

    支持的操作

    • term terms terms_set
    • prefix
    • range
    • match multi_match
    • query_string simple_query_string
    • exists

    查询时无法使用通配符,例如"labels.time*"
    注意,所有查询,包括range操作都将值看做字符串关键字
    不支持高度显示
    可以对设置flattened的字段进行排序,以及简单聚合,例如terms
    与查询一样没有对数字的支持,所有值都为关键字,排序按照字典排序
    因为它无法储存内部的映射,所以不可以设置store参数

    • 支持的参数
    • doc_values默认true 设置false可以节省空间,但不可以用于排序 聚合 脚本,但可以用于查询
    • ignore_above设置内部字段的长度,用于字符串来设置限定长度,如果大于长度会储存在_source但不可以被检索,聚合
    • index默认true 设置false使此字段不可被检索
    • null_value设置一个值在检索的时候来替换null

    3.4.7 IP

    可以为 IPv4 IPv6地址
    支持的参数

    • doc_values默认true 设置false可以节省空间,但不可以用于排序 聚合 脚本,但可以用于查询
    • index默认true 设置false使此字段不可被检索
    • null_value设置一个IPv4值在检索的时候来替换null
    • store默认false 设置true可以检索只显示true的字段,和_source差不多用于过滤显示hits中_source字段

    3.4.8 Join

    • 添加映射,关系在relations中定义
    • 可以定义单个,也可以定义多个,父只可以有一个,子可以多个
    • 每个索引中只可以有一个join字段

    创建映射 a父级 b子级

    PUT my_index
    {
      "mappings": {
        "properties": {
          "my_join_field": { 
            "type": "join",
            "relations": {
              "a": "b" 
            }
          }
        }
      }
    }
    

    添加两个父文档,使用name来指定父级名称

    PUT my_index/_doc/1
    {
      "text": "I'm a...",
      "my_join_field": {
        "name": "a" 
      }
    }
    
    PUT my_index/_doc/2
    {
      "text": "I'm a...",
      "my_join_field": {
        "name": "a"
      }
    }
    

    也可以直接指定,简化版

    PUT my_index/_doc/1
    {
      "text": "I'm a...",
      "my_join_field": "a" 
    }
    
    PUT my_index/_doc/2
    {
      "text": "I'm a...",
      "my_join_field": "a"
    }
    
    

    创建两个子文档,需要指定路由值,其中name指向子级名称,parent指向父级文档的_id

    PUT my_index/_doc/3?routing=1
    {
      "text": "I'm b...",
      "my_join_field": {
        "name": "b", 
        "parent": "1" 
      }
    }
    
    PUT my_index/_doc/4?routing=1
    {
      "text": "I'm b...",
      "my_join_field": {
        "name": "b",
        "parent": "1"
      }
    }
    

    join的限制

    • 每个索引只允许有一个join字段映射
    • 父子文档必须在同一分片,这就表示对子文档进行检索,删除,更新需要提供路由值
    • 一个字段可以有多个子级,但只可以有一个父级
    • 可以向join中添加新的字段
    • 可以将子元素添加到现有的元素中,但该元素需要已经是父级

    全部查找,根据_id排序,默认升序

    GET my_index/_search
    {
      "query": {
        "match_all": {}
      },
      "sort": ["_id"]
    }
    

    父文档查询

    • 查找父id为1并且子级名称为b的文档
    • 根据父级名称为a的文档,显示前十条
    GET my_index/_search
    {
      "query": {
        "parent_id": { 
          "type": "b",
          "id": "1"
        }
      },
      "aggs": {
        "parents": {
          "terms": {
            "field": "my_join_field#a", 
            "size": 10
          }
        }
      }
    }
    

    全局顺序(global ordinals)

    • 如果不经常使用join并经常插入数据,可以禁用它
    PUT my_index
    {
      "mappings": {
        "properties": {
          "my_join_field": {
            "type": "join",
            "relations": {
               "a": "b"
            },
            "eager_global_ordinals": false
          }
        }
      }
    }
    

    指定多个子级

    • 父级a
    • 子级b c
    PUT my_index
    {
      "mappings": {
        "properties": {
          "my_join_field": {
            "type": "join",
            "relations": {
              "a": ["b", "c"]  
            }
          }
        }
      }
    }
    

    多级别父级,这样设置性能会下降

    • 父级a 子级b c
    • 父级b 子级d
    PUT my_index
    {
      "mappings": {
        "properties": {
          "my_join_field": {
            "type": "join",
            "relations": {
              "a": ["b", "c"],  
              "b": "d" 
            }
          }
        }
      }
    }
    

    插入子文档

    • 这里name指向子级名称 parent指向父级文档的_id 也就是父级名称b_id
    PUT my_index/_doc/3?routing=1
    {
      "text": "I'm d...",
      "my_join_field": {
        "name": "d",
        "parent": "2"
      }
    }
    
    

    3.4.9 Keyword

    它可以排序,聚合
    它只能按准确的值检索,如果想全文检索可以设置为text

    PUT my_index
    {
      "mappings": {
        "properties": {
          "tags": {
            "type":  "keyword"
          }
        }
      }
    }
    

    接收的参数

    • doc_values默认true 设置false可以节省空间,但不可以用于排序 聚合 脚本,但可以用于查询
    • eager_global_ordinals默认false 设置true可以在应用刷新时立即加载全局顺序,经常用于聚合的可以开启
    • fields多字段,出于不同目的为同一字符串进行设置,可以一个用于全文检索,一个用于排序,聚合
    • ignore_above设置内部字段的长度,用于字符串来设置限定长度,如果大于长度会储存在_source但不可以被检索,聚合
    • index默认true 设置false使此字段不可被检索
    • norms默认设置为false后表示不对其评分,也可以使用PUT对现有字段进行设置normsfalse 一旦设置为false后就不可再改为true
    • null_value设置一个值在检索的时候来替换null
    • store默认false 设置true可以检索只显示true的字段,和_source差不多用于过滤显示hits中_source字段

    3.4.10 Nested

    nestedobject的专用版本,表示对象数组

    • 插入数据,默认为object类型
    • 在其内部会转化为
    {
      "group" :        "fans",
      "user.first" : [ "alice", "john" ],
      "user.last" :  [ "smith", "white" ]
    }
    
    PUT my_index/_doc/1
    {
      "group" : "fans",
      "user" : [ 
        {
          "first" : "John",
          "last" :  "Smith"
        },
        {
          "first" : "Alice",
          "last" :  "White"
        }
      ]
    }
    
    • 所以同时搜索Alice and Smith也可以搜索到
    GET my_index/_search
    {
      "query": {
        "bool": {
          "must": [
            { "match": { "user.first": "Alice" }},
            { "match": { "user.last":  "Smith" }}
          ]
        }
      }
    }
    

    设置nested映射,插入数据

    PUT my_index
    {
      "mappings": {
        "properties": {
          "user": {
            "type": "nested" 
          }
        }
      }
    }
    
    PUT my_index/_doc/1
    {
      "group" : "fans",
      "user" : [
        {
          "first" : "John",
          "last" :  "Smith"
        },
        {
          "first" : "Alice",
          "last" :  "White"
        }
      ]
    }
    
    • 这时如果同时检索Alice and Smith就匹配不到文档了,因为没有一个文档是user.first=Alice amd user.last=Smith
    • 这里是path执行查询的nested类型的字段名称
    GET my_index/_search
    {
      "query": {
        "nested": {
          "path": "user",
          "query": {
            "bool": {
              "must": [
                { "match": { "user.first": "Alice" }},
                { "match": { "user.last":  "Smith" }} 
              ]
            }
          }
        }
      }
    }
    
    • 查询在类型nested的字段名称user,并且user.first=Alice amd user.last=White的文档
    • 并且高亮显示匹配到的user.first
    GET my_index/_search
    {
      "query": {
        "nested": {
          "path": "user",
          "query": {
            "bool": {
              "must": [
                { "match": { "user.first": "Alice" }},
                { "match": { "user.last":  "White" }} 
              ]
            }
          },
          "inner_hits": { 
            "highlight": {
              "fields": {
                "user.first": {}
              }
            }
          }
        }
      }
    }
    

    字段参数

    • dynamic默认true 没有指定properties时是否支持动态映射,为false可以添加到_source但不会创建映射也不会被检索,为strict会插入新字段异常
    • properties嵌套对象可以是任何数据类型,可以将新属性添加到现有对象中

    nested映射的上限值

    • index.mapping.nested_fields.limit默认值50
    • index.mapping.nested_objects.limit默认值10000

    3.4.11 Numeric

    数值类型

    类型的选取

    • 如果没有小数根据自己的大小范围选择byte short integer long
    • 如果有精度根据需求选择
      精度

    注意

    • double float half_float类型会考虑+0.0-0.0的区别
    • 使用term查询-0.0不会匹配到+0.0 反之亦然
    • 如果上限是-0.0 不会匹配+0.0
    • 如果下限是+0.0 不会匹配-0.0

    接受参数

    • coerce默认true将字符串转为数字,并截取整数部分(小数点前面部分)
    • doc_values默认true 设置false可以节省空间,但不可以用于排序 聚合 脚本,但可以用于查询
    • ignore_malformed默认false格式错误发生异常 为true则插入数据在_source但不创建映射,不能用于检索
    • index默认true 设置false使此字段不可被检索
    • null_value设置一个值在检索的时候来替换null
    • store默认false 设置true可以检索只显示true的字段,和_source差不多用于过滤显示hits中_source字段

    3.4.12 Object

    JSON文档可以嵌套对象,对象可以再嵌套对象

    • 这里整个JSON文档是一个Object
    • JSON文档里面包含了一个managerObject
    • manager里面再包含了一个nameObject
    PUT my_index/_doc/1
    { 
      "region": "US",
      "manager": { 
        "age":     30,
        "name": { 
          "first": "John",
          "last":  "Smith"
        }
      }
    }
    
    • 其内部构造
    {
      "region":             "US",
      "manager.age":        30,
      "manager.name.first": "John",
      "manager.name.last":  "Smith"
    }
    

    创建映射,不需要设置type 因为object是默认值

    • 这里表示最外层的文档是一个Object
    • 文档内部包含了一个managerObject
    • manager里面再包含了一个nameObject
    PUT my_index
    {
      "mappings": {
        "properties": { 
          "region": {
            "type": "keyword"
          },
          "manager": { 
            "properties": {
              "age":  { "type": "integer" },
              "name": { 
                "properties": {
                  "first": { "type": "text" },
                  "last":  { "type": "text" }
                }
              }
            }
          }
        }
      }
    }
    

    接受参数

    • dynamic默认true 没有指定properties时是否支持动态映射,为false可以添加到_source但不会创建映射也不会被检索,为strict会插入新字段异常
    • enabled默认truefalse时可以以任何类型添加数据,数据都会被储存在_source中,但不会创建映射,也不能被检索
    • properties嵌套对象可以是任何数据类型,可以将新属性添加到现有对象中

    3.4.13 Range

    范围类型

    创建映射

    PUT range_index
    {
      "mappings": {
        "properties": {
          "expected_attendees": {
            "type": "integer_range"
          },
          "time_frame": {
            "type": "date_range", 
            "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd"
          }
        }
      }
    }
    

    添加文档,日期格式可以为format的一种

    • 日期也可以使用now表示系统时间

    也可以使用日期数学

    • +1h
    • -1d
    • /d
    PUT range_index/_doc/1
    {
      "expected_attendees" : { 
        "gte" : 10,
        "lte" : 20
      },
      "time_frame" : { 
        "gte" : "2015-10-31 12:00:00", 
        "lte" : "2015-11-01"
      }
    }
    

    数组范围查询文档

    GET range_index/_search
    {
      "query" : {
        "term" : {
          "expected_attendees" : {
            "value": 12
          }
        }
      }
    }
    

    日期范围查询文档

    • WITHIN搜索范围包含文档范围,可以相等
    • CONTAINS文档范围包含搜索范围,可以相等
    • INTERSECTS默认 搜索范围和文档范围有相交部分,包括相等
    GET range_index/_search
    {
      "query" : {
        "range" : {
          "time_frame" : { 
            "gte" : "2015-10-31",
            "lte" : "2015-11-01",
            "relation" : "WITHIN" 
          }
        }
      }
    }
    

    接受参数

    • coerce默认true将字符串转为数字,并截取整数部分(小数点前面部分)
    • index默认true 设置false使此字段不可被检索
    • store默认false 设置true可以检索只显示true的字段,和_source差不多用于过滤显示hits中_source字段

    3.4.14 Text

    文本数据类型

    • 同一字段最好包括text文本和keyword关键字这样可以text全文检索,而keyword用于排序,聚合

    添加映射

    PUT my_index
    {
      "mappings": {
        "properties": {
          "full_name": {
            "type":  "text"
          }
        }
      }
    }
    

    接受字段

    • analyzer默认standard 指定分词器,使用ik分词器ik_max_word
    • eager_global_ordinals默认false 设置true可以在应用刷新时立即加载全局顺序,经常用于聚合的可以开启
    • fielddata默认false 设置字段是否可用于排序,聚合,脚本
    • fields多字段,出于不同目的为同一字符串进行设置,可以一个用于全文检索,一个用于排序,聚合
    • index默认true 设置false使此字段不可被检索
    • norms默认设置为false后表示不对其评分,也可以使用PUT对现有字段进行设置normsfalse 一旦设置为false后就不可再改为true
    • store默认false 设置true可以检索只显示true的字段,和_source差不多用于过滤显示hits中_source字段

    3.4.15 Token count

    令牌计数
    创建映射,插入文档

    PUT my_index
    {
      "mappings": {
        "properties": {
          "name": { 
            "type": "text",
            "fields": {
              "length": { 
                "type":     "token_count",
                "analyzer": "standard"
              }
            }
          }
        }
      }
    }
    
    PUT my_index/_doc/1
    { "name": "John Smith" }
    
    PUT my_index/_doc/2
    { "name": "Rachel Alice Williams" }
    

    检索文档

    • "Rachel Alice Williams"会被当做Rachel Alice Williams三个令牌
    • 查找令牌数为3的文档,仅匹配文档2,如果改为2 则仅匹配文档1
    GET my_index/_search
    {
      "query": {
        "term": {
          "name.length": 3 
        }
      }
    }
    

    接受参数

    • analyzer默认standard 指定分词器,使用ik分词器ik_max_word
    • doc_values默认true 设置false可以节省空间,但不可以用于排序 聚合 脚本,但可以用于查询
    • index默认true 设置false使此字段不可被检索
    • null_value设置一个值在检索的时候来替换null
    • store默认false 设置true可以检索只显示true的字段,和_source差不多用于过滤显示hits中_source字段

    4.0.0 查询DSL

    4.1.0 复合查询

    • bool
      • must should与相关性分数有关 must_not filter与相关性分数无关,表示过滤
    • boosting
      • positive表示匹配的文档 减少相关性分数negative
    • constant_score
      • 查询的文档_score都是常量
    • dis_max
      • 接受多个查询,并返回满足任意一个的文档,当配合bool使用时,将使用匹配的最佳文档

    4.1.1 bool

    • must都满足,相关性_score提高
    • must_not都不满足,相关性_score为0
    • should满足任何一个
    • filter都满足,但是相关性_score全部一致
    GET _search
    {
      "query": {
        "bool" : {
          "must" : {
            "term" : { "user" : "kimchy" }
          },
          "filter": {
            "term" : { "tag" : "tech" }
          },
          "must_not" : {
            "range" : {
              "age" : { "gte" : 10, "lte" : 20 }
            }
          },
          "should" : [
            { "term" : { "tag" : "wow" } },
            { "term" : { "tag" : "elasticsearch" } }
          ]
        }
      }
    }
    

    4.1.2 boosting

    • positive必须,返回的文档需要与此匹配
    • negative必须,降低匹配文档相关性
    • negative_boost必须,值介于0,1.0之间浮点数,得分与之相乘
    GET /_search
    {
        "query": {
            "boosting" : {
                "positive" : {
                    "term" : {
                        "text" : "apple"
                    }
                },
                "negative" : {
                     "term" : {
                         "text" : "pie tart fruit crumble tree"
                    }
                },
                "negative_boost" : 0.5
            }
        }
    }
    

    4.1.3 constant_score

    • filter必须,过滤文档,不考虑相关性分数
    GET /_search
    {
        "query": {
            "constant_score" : {
                "filter" : {
                    "term" : { "user" : "kimchy"}
                }
            }
        }
    }
    

    4.1.4 dis_max

    • 返回一条相关性分数最高的文档
    • queries必须,包含一个或多个条件,满足条件越多,相关性分数越高
    • tie_breaker表示[0,1.0]浮点数,与相关性分数相乘
    GET /_search
    {
        "query": {
            "dis_max" : {
                "queries" : [
                    { "term" : { "title" : "Quick pets" }},
                    { "term" : { "body" : "Quick pets" }}
                ],
                "tie_breaker" : 0.7
            }
        }
    }
    

    4.2.0 全文查询

    • ``
    • ``

    4.2.1 intervals

    • 下面检索字段my_text
      • 可以匹配my favorite food is cold porridge
      • 不可以匹配when it's cold my favorite food is porridge
    POST _search
    {
      "query": {
        "intervals" : {
          "my_text" : {
            "all_of" : {
              "ordered" : true,
              "intervals" : [
                {
                  "match" : {
                    "query" : "my favorite food",
                    "max_gaps" : 0,
                    "ordered" : true
                  }
                },
                {
                  "any_of" : {
                    "intervals" : [
                      { "match" : { "query" : "hot water" } },
                      { "match" : { "query" : "cold porridge" } }
                    ]
                  }
                }
              ]
            }
          }
        }
      }
    }
    

    4.2.2 match

    可以全文查询也可以模糊查询

    • 也可以使用analyzer指定分词器
    • 简单查询
    GET /_search
    {
        "query": {
            "match" : {
                "message" : "this is a test"
            }
        }
    }
    
    • operator and默认为or
    GET /_search
    {
        "query": {
            "match" : {
                "message" : {
                    "query" : "this is a test",
                    "operator" : "and"
                }
            }
        }
    }
    

    4.2.3 match_bool_prefix

    • 下面两者相等,匹配前缀表示quick* or brown* or f*
    GET /_search
    {
        "query": {
            "match_bool_prefix" : {
                "message" : "quick brown f"
            }
        }
    }
    
    GET /_search
    {
        "query": {
            "bool" : {
                "should": [
                    { "term": { "message": "quick" }},
                    { "term": { "message": "brown" }},
                    { "prefix": { "message": "f"}}
                ]
            }
        }
    }
    

    4.2.4 match_phrase

    • 短语匹配,可指定分词器
    GET /_search
    {
        "query": {
            "match_phrase" : {
                "message" : {
                    "query" : "this is a test",
                    "analyzer" : "ik_max_word"
                }
            }
        }
    }
    

    4.2.5 match_phrase_prefix

    • 短语匹配前缀,也可以添加参数analyzer来指定分词器

    • 只能匹配到前缀,例如

      • "how"
        • 可以匹配how are you how old are you what how
        • 不可以匹配whow are you whathow you因为这些不是how开头
      • h
        • 可以匹配how are what here
        • 不可以匹配elasticsearch match 因为这些不是h开头
    • 下面可以匹配quick brown fox two quick brown ferrets

    • 不可以匹配the fox is quick and brown

    GET /_search
    {
        "query": {
            "match_phrase_prefix" : {
                "message" : {
                    "query" : "quick brown f"
                }
            }
        }
    }
    

    4.2.6 multi_match

    可以匹配多字段查询

    • 表示在subject or message中查询this is a test
    GET /_search
    {
      "query": {
        "multi_match" : {
          "query":    "this is a test", 
          "fields": [ "subject", "message" ] 
        }
      }
    }
    
    • 使用通配符* 表示零个或多个
    • 可以匹配title first_name last_name
    GET /_search
    {
      "query": {
        "multi_match" : {
          "query":    "Will Smith",
          "fields": [ "title", "*_name" ] 
        }
      }
    }
    
    • 里面可以有analyzer来指定分词器
    • type可以指定查询类型
    • best_fields
    GET /_search
    {
      "query": {
        "multi_match" : {
          "query":      "brown fox",
          "type":       "best_fields",
          "fields":     [ "subject", "message" ],
          "tie_breaker": 0.3
        }
      }
    }
    
    GET /_search
    {
      "query": {
        "dis_max": {
          "queries": [
            { "match": { "subject": "brown fox" }},
            { "match": { "message": "brown fox" }}
          ],
          "tie_breaker": 0.3
        }
      }
    }
    
    • operator and
    • 所有术语都存在
    GET /_search
    {
      "query": {
        "multi_match" : {
          "query":      "Will Smith",
          "type":       "best_fields",
          "fields":     [ "first_name", "last_name" ],
          "operator":   "and" 
        }
      }
    }
    
    • most_fields
    GET /_search
    {
      "query": {
        "multi_match" : {
          "query":      "quick brown fox",
          "type":       "most_fields",
          "fields":     [ "title", "title.original", "title.shingles" ]
        }
      }
    }
    
    GET /_search
    {
      "query": {
        "bool": {
          "should": [
            { "match": { "title":          "quick brown fox" }},
            { "match": { "title.original": "quick brown fox" }},
            { "match": { "title.shingles": "quick brown fox" }}
          ]
        }
      }
    }
    
    • phrase_prefix
    GET /_search
    {
      "query": {
        "multi_match" : {
          "query":      "quick brown f",
          "type":       "phrase_prefix",
          "fields":     [ "subject", "message" ]
        }
      }
    }
    
    GET /_search
    {
      "query": {
        "dis_max": {
          "queries": [
            { "match_phrase_prefix": { "subject": "quick brown f" }},
            { "match_phrase_prefix": { "message": "quick brown f" }}
          ]
        }
      }
    }
    
    • minimum_should_match
    可以指定分词的个数,
    1 -> 匹配任意一个词
    2 -> 匹配任意两个词
    3 -> 因为超过了分词量,所以匹配不到
    GET a1/_search
    {
      "query": {
        "match": {
          "name": {
            "query": "小米电视",
            "minimum_should_match": 1
          }
        }
      }
    }
    
    3x0.66=1.98,因为1.98<2 所以匹配任意一个
    GET a1/_search
    {
      "query": {
        "match": {
          "name": {
            "query": "小米智能电视",
            "minimum_should_match": "66%"
          }
        }
      }
    }
    
    3x0.67=2.01,因为2.01>2 所以匹配任意两个
    GET a1/_search
    {
      "query": {
        "match": {
          "name": {
            "query": "小米智能电视",
            "minimum_should_match": "67%"
          }
        }
      }
    }
    
    • cross_fields
    • 至少匹配一个Will or Smith
    GET /_search
    {
      "query": {
        "multi_match" : {
          "query":      "Will Smith",
          "type":       "cross_fields",
          "fields":     [ "first_name", "last_name" ],
          "operator":   "and"
        }
      }
    }
    
    • bool_prefix
    • match_bool_prefix相似
    GET /_search
    {
      "query": {
        "multi_match" : {
          "query":      "quick brown f",
          "type":       "bool_prefix",
          "fields":     [ "subject", "message" ]
        }
      }
    }
    

    4.2.7 query_string

    GET /_search
    {
        "query": {
            "query_string" : {
                "query" : "(new york city) OR (big apple)",
                "default_field" : "content"
            }
        }
    }
    
    • status:active
      • status字段包含active
    • title:(quick OR brown)
      • title字段包含quickbrown
    • author:"John Smith"
      • 包含短语John Smith
    • book.*:(quick OR brown)
      • *需要使用反斜杠进行转义,可以匹配book.title book.content
    • _exists_:title
      • title非空
    • 通配符
      • ?代表一个 *代表零个或多个
      • 使用*可以匹配"" " " 但不可以匹配null
    • 空格 空查询
      • 如果是""" " 他将不返回文档
    • 下面可以匹配必须含有a不能含有d的所有值,再此前提再多出b c会提高相关性得分
    • 相当于((a AND b) OR (a AND c) OR a) AND NOT d
    {
        "bool": {
            "must":     { "match": "a"         },
            "should":   { "match": "b c" },
            "must_not": { "match": "d"        }
        }
    }
    

    4.3.0 连接查询

    4.3.1 nested

    单个查询

    • 添加字段anested类型
    PUT my_index
    {
        "mappings" : {
            "properties" : {
                "a" : {
                    "type" : "nested"
                }
            }
        }
    }
    
    • 检索文档
    • path对应nested类型文档的名称
    • a.b表示a字段下的b属性
    • score_mode
      • avg默认,匹配子对象的平均相关性得分
      • min匹配子对象的最小相关性得分
      • max匹配子对象的最大相关性得分
      • none不使用匹配子对象的相关性分数,设置父文档相关性分数0
      • sum匹配子对象的相关性得分相加
    • ignore_unmapped
      • 默认falsetrue表示指定path错误也不会报异常,结果为空
    GET /my_index/_search
    {
        "query":  {
            "nested" : {
                "path" : "a",
                "query" : {
                    "bool" : {
                        "must" : [
                        { "match" : {"a.b" : "blue"} },
                        { "range" : {"a.c" : {"gt" : 5}} }
                        ]
                    }
                },
                "score_mode" : "avg"
            }
        }
    }
    

    嵌套查询

    • 创建映射,添加文档
    PUT /drivers
    {
        "mappings" : {
            "properties" : {
                "driver" : {
                    "type" : "nested",
                    "properties" : {
                        "last_name" : {
                            "type" : "text"
                        },
                        "vehicle" : {
                            "type" : "nested",
                            "properties" : {
                                "make" : {
                                    "type" : "text"
                                },
                                "model" : {
                                    "type" : "text"
                                }
                            }
                        }
                    }
                }
            }
        }
    }
    
    PUT /drivers/_doc/1
    {
      "driver" : {
            "last_name" : "McQueen",
            "vehicle" : [
                {
                    "make" : "Powell Motors",
                    "model" : "Canyonero"
                },
                {
                    "make" : "Miller-Meteor",
                    "model" : "Ecto-1"
                }
            ]
        }
    }
    
    PUT /drivers/_doc/2
    {
      "driver" : {
            "last_name" : "Hudson",
            "vehicle" : [
                {
                    "make" : "Mifune",
                    "model" : "Mach Five"
                },
                {
                    "make" : "Miller-Meteor",
                    "model" : "Ecto-1"
                }
            ]
        }
    }
    
    • 嵌套nested检索
    GET /drivers/_search
    {
        "query" : {
            "nested" : {
                "path" : "driver",
                "query" : {
                    "nested" : {
                        "path" :  "driver.vehicle",
                        "query" :  {
                            "bool" : {
                                "must" : [
                                    { "match" : { "driver.vehicle.make" : "Powell Motors" } },
                                    { "match" : { "driver.vehicle.model" : "Canyonero" } }
                                ]
                            }
                        }
                    }
                }
            }
        }
    }
    

    4.3.2 has_child

    • 创建映射
    • a父级 b子级
    PUT /my_index
    {
        "mappings": {
            "properties" : {
                "my-join-field" : {
                    "type" : "join",
                    "relations": {
                        "a": "b"
                    }
                }
            }
        }
    }
    
    • 检索
    • type必须为子级文档的字段名称
    • query查询条件
    • ignore_unmapped默认falsetrue表示指定type错误也不会报异常
    • max_children查询的父文档,子级最大数
    • min_children查询的父文档,子级最小数
    • score_mode
      • none默认不使用匹配子文档的相关性分数,设置父文档相关性分数0
      • avg匹配子文档的平均相关性得分
      • min匹配子文档的最小相关性得分
      • max匹配子文档对的最大相关性得分
      • sum匹配子文档的相关性得分相加
    GET my_index/_search
    {
        "query": {
            "has_child" : {
                "type" : "child",
                "query" : {
                    "match_all" : {}
                },
                "max_children": 10,
                "min_children": 2,
                "score_mode" : "min"
            }
        }
    }
    

    4.3.3 has_parent

    • 创建映射
    PUT /my-index
    {
        "mappings": {
            "properties" : {
                "my-join-field" : {
                    "type" : "join",
                    "relations": {
                        "a": "b"
                    }
                },
                "tag" : {
                    "type" : "keyword"
                }
            }
        }
    }
    
    • 检索文档
    GET /my-index/_search
    {
        "query": {
            "has_parent" : {
                "parent_type" : "a",
                "query" : {
                    "term" : {
                        "tag" : {
                            "value" : "Elasticsearch"
                        }
                    }
                }
            }
        }
    }
    

    4.3.4 parent_id

    • 创建映射
    • a父级 b子级
    PUT my_index
    {
        "mappings": {
            "properties" : {
                "my-join-field" : {
                    "type" : "join",
                    "relations": {
                        "a": "b"
                    }
                }
            }
        }
    }
    
    • 添加父文档
    POST /my_index/_doc/1
    {
      "text": "I'm a...",
      "my-join-field": "a"
    }
    
    • 添加子文档
    • 路由值也必须指定
    • name子文档字段名称
    • parent对应父文档的_id
    POST /my_index/_doc/2?routing=1
    {
      "text": "I'm b...",
      "my-join-field": {
        "name": "b",
        "parent": "1"
      }
    }
    
    • parent_id检索文档
    • type为子级文档字段名称
    • id为关联父级文档_id
    • ignore_unmapped默认falsetrue表示指定type错误也不会报异常
    GET my_index/_search
    {
      "query": {
        "parent_id": { 
          "type": "b",
          "id": "1"
        }
      }
    }
    

    4.4.0 match_all

    • 查询所有文档,相关性分数1.0
    GET mm/_search
    {
      "query": {
        "match_all": {}
      }
    }
    
    • 设置相关性分数2.0
    GET mm/_search
    {
      "query": {
        "match_all": {
          "boost": 2
        }
      }
    }
    
    • 简写版
    GET mm/_search
    
    GET mm/_search
    {}
    
    • 全部不匹配
    GET mm/_search
    {
      "query": {
        "match_none": {}
      }
    }
    

    4.5.0 词语标准查询

    4.5.1 exists

    查找不到的原因

    • 字段是null[]
    • 字段设置不可被检索"index":false
    • 字段长度超出ignore_above限制
    • 字段格式错误,设置了"ignore_malformed":true
    GET /_search
    {
        "query": {
            "exists": {
                "field": "user"
            }
        }
    }
    

    可以匹配到

    • 空字符串"" " "或"-"
    • 数组中包含null和一个不为null的值,例如[null,"111"]
    • 设置了null_value的字段,即使为null也可以被检索到

    使用must_not查找相反

    GET /_search
    {
        "query": {
            "bool": {
                "must_not": {
                    "exists": {
                        "field": "user"
                    }
                }
            }
        }
    }
    

    4.5.2 fuzzy

    模糊查询

    • 更改一个字符 box -> fox
    • 删除一个字符 black -> lack
    • 插入一个字符 sic -> sick
    • 转换两个相邻字符位置 act -> cat
    GET /_search
    {
        "query": {
            "fuzzy": {
                "user": {
                    "value": "ki"
                }
            }
        }
    }
    

    4.5.3 ids

    按照文档的_id值返回满足的文档

    GET /_search
    {
        "query": {
            "ids" : {
                "values" : ["1", "4", "100"]
            }
        }
    }
    

    4.5.4 prefix

    前缀查询

    • 查找字段userki开头的词语
    GET /_search
    {
        "query": {
            "prefix": {
                "user": {
                    "value": "ki"
                }
            }
        }
    }
    

    简化版

    GET /_search
    {
        "query": {
            "prefix" : { "user" : "ki" }
        }
    }
    

    4.5.5 range

    范围查询,所用参数

    • lt>
    • lte>=
    • gt<
    • gte<=
    • format字段为date类型时,指定日期格式,检索时,覆盖映射格式
    • relation
      • INTERSECTS默认 搜索范围和文档范围有相交部分,包括相等
      • CONTAINS文档范围包含搜索范围,可以相等
      • WITHIN搜索范围包含文档范围,可以相等
    • time_zone不会转化now 但会转化日期数学now-1h
    • boost默认1.0 指定相关性分数
    GET _search
    {
        "query": {
            "range" : {
                "age" : {
                    "gte" : 10,
                    "lte" : 20,
                    "boost" : 2.0
                }
            }
        }
    }
    
    GET _search
    {
        "query": {
            "range" : {
                "timestamp" : {
                    "gte" : "now-1d/d",
                    "lt" :  "now/d"
                }
            }
        }
    }
    

    4.5.6 regexp

    正则查询,不适用中文

    • .表示任意一个字母,不能匹配符号例如@ # ^ . 一个空格
    • ?表示重复前面那个字符0次或1次
      • 例如abc?可以匹配ab abc
    • + *表示重复前面那个字符0次或多次
      • 例如ab+可以匹配ab abb abbb 不可以匹配abc abbbc
    • {}表示匹配最小最大次数
      • a{2}匹配aa
      • a{2,4}匹配aa aaa aaaa
      • a{2,}匹配至少2次或无限次
    • []匹配括号中一个字符
      • [abc]匹配a b c
    GET /_search
    {
        "query": {
            "regexp": {
                "user": {
                    "value": "k.*y"
                }
            }
        }
    }
    

    4.5.7 term

    精确查询,不应该使用对text字段使用,对于text应该用match

    GET /_search
    {
        "query": {
            "term": {
                "user": {
                    "value": "Kimchy",
                    "boost": 1.0
                }
            }
        }
    }
    

    为什么不能使用termtext类型进行检索
    例如:Quick Brown Foxes!会被解析为[quick, brown, fox]
    这是在通过term精确检索Quick Brown Foxes!就会找不到...

    4.5.8 terms

    term相同,只不过terms是查询多个值

    GET /_search
    {
        "query" : {
            "terms" : {
                "user" : ["kimchy", "elasticsearch"],
                "boost" : 1.0
            }
        }
    }
    

    创建索引,插入文档

    PUT my_index
    {
        "mappings" : {
            "properties" : {
                "color" : { "type" : "keyword" }
            }
        }
    }
    
    PUT my_index/_doc/1
    {
      "color":   ["blue", "green"]
    }
    
    PUT my_index/_doc/2
    {
      "color":   "blue"
    }
    
    • 在索引my_index中检索与索引my_index且文档ID为2与字段color相同词语的文档
    • 如果在创建索引时指定了路由值,则必须设置routing参数
    GET my_index/_search
    {
      "query": {
        "terms": {
            "color" : {
                "index" : "my_index",
                "id" : "2",
                "path" : "color"
            }
        }
      }
    }
    

    4.5.9 wildcard

    通配符查询,不适用中文

    • ?匹配任何单个字母
    • *匹配0个或多个字母
    • 下面查询ki*y可以匹配kiy kity kimchy
    GET /_search
    {
        "query": {
            "wildcard": {
                "user": {
                    "value": "ki*y"
                }
            }
        }
    }
    

    5.0.0 聚合

    5.1.0 度量聚合

    5.1.1 avg

    平均值聚合

    GET /exams/_search?size=0
    {
        "aggs" : {
            "avg_grade" : { "avg" : { "field" : "grade" } }
        }
    }
    

    结果

    {
        ...
        "aggregations": {
            "avg_grade": {
                "value": 75.0
            }
        }
    }
    

    5.1.2 extended_stats

    扩展统计聚合

    GET /exams/_search
    {
        "size": 0,
        "aggs" : {
            "grades_stats" : { "extended_stats" : { "field" : "grade" } }
        }
    }
    

    结果

    {
        ...
    
        "aggregations": {
            "grades_stats": {
               "count": 2,
               "min": 50.0,
               "max": 100.0,
               "avg": 75.0,
               "sum": 150.0,
               "sum_of_squares": 12500.0,
               "variance": 625.0,
               "std_deviation": 25.0,
               "std_deviation_bounds": {
                "upper": 125.0,
                "lower": 25.0
               }
            }
        }
    }
    

    5.1.3 max

    最大值聚合

    POST /sales/_search?size=0
    {
        "aggs" : {
            "max_price" : { "max" : { "field" : "price" } }
        }
    }
    

    结果

    {
        ...
        "aggregations": {
            "max_price": {
                "value": 200.0
            }
        }
    }
    

    5.1.4 min

    最小值聚合

    POST /sales/_search?size=0
    {
        "aggs" : {
            "min_price" : { "min" : { "field" : "price" } }
        }
    }
    

    结果

    {
        ...
    
        "aggregations": {
            "min_price": {
                "value": 10.0
            }
        }
    }
    

    5.1.5 stats

    统计聚合

    POST /exams/_search?size=0
    {
        "aggs" : {
            "grades_stats" : { "stats" : { "field" : "grade" } }
        }
    }
    

    结果

    {
        ...
    
        "aggregations": {
            "grades_stats": {
                "count": 2,
                "min": 50.0,
                "max": 100.0,
                "avg": 75.0,
                "sum": 150.0
            }
        }
    }
    

    5.1.6 sum

    POST /sales/_search?size=0
    {
        "query" : {
            "constant_score" : {
                "filter" : {
                    "match" : { "type" : "hat" }
                }
            }
        },
        "aggs" : {
            "hat_prices" : { "sum" : { "field" : "price" } }
        }
    }
    

    结果

    {
        ...
        "aggregations": {
            "hat_prices": {
               "value": 450.0
            }
        }
    }
    

    5.1.7 value_count

    共多少个值

    • 如果文档1{"a":"a"} 文档2{"a":["a","aa"," ","",null]}
    • 共有5个值
      例如:
    POST /sales/_search?size=0
    {
        "aggs" : {
            "types_count" : { "value_count" : { "field" : "type" } }
        }
    }
    

    结果

    {
        ...
        "aggregations": {
            "types_count": {
                "value": 7
            }
        }
    }
    

    5.2.0 桶聚合

    • 度量聚合是嵌套桶聚合里面的

    5.2.1 adjacency_matrix

    相邻矩阵聚合

    PUT /emails/_bulk
    { "index" : { "_id" : 1 } }
    { "accounts" : ["hillary", "sidney"]}
    { "index" : { "_id" : 2 } }
    { "accounts" : ["hillary", "donald"]}
    { "index" : { "_id" : 3 } }
    { "accounts" : ["vladimir", "donald"]}
    
    GET emails/_search
    {
      "size": 0,
      "aggs" : {
        "interactions" : {
          "adjacency_matrix" : {
            "filters" : {
              "grpA" : { "terms" : { "accounts" : ["hillary", "sidney"] }},
              "grpB" : { "terms" : { "accounts" : ["donald", "mitt"] }},
              "grpC" : { "terms" : { "accounts" : ["vladimir", "nigel"] }}
            }
          }
        }
      }
    }
    

    结果

    • 按照filters的自定义名称grpA grpB grpC进行表示key
    ...
      "aggregations" : {
        "interactions" : {
          "buckets" : [
            {
              "key" : "grpA",
              "doc_count" : 2
            },
            {
              "key" : "grpA&grpB",
              "doc_count" : 1
            },
            {
              "key" : "grpB",
              "doc_count" : 2
            },
            {
              "key" : "grpB&grpC",
              "doc_count" : 1
            },
            {
              "key" : "grpC",
              "doc_count" : 1
            }
          ]
        }
      }
    }
    

    5.2.2 children

    子级聚合

    • 创建映射a父级 b子级,添加文档
    PUT child_example
    {
      "mappings": {
        "properties": {
          "my_join": {
            "type": "join",
            "relations": {
              "a": "b"
            }
          }
        }
      }
    }
    
    PUT child_example/_doc/1
    {
      "my_join": "a",
      "tags": [
        "windows-server-2003",
        "windows-server-2008",
        "file-transfer"
      ]
    }
    PUT child_example/_doc/2?routing=1
    {
      "my_join": {
        "name": "b",
        "parent": "1"
      },
      "owner": {
        "display_name": "Sam"
      }
    }
    PUT child_example/_doc/3?routing=1
    {
      "my_join": {
        "name": "b",
        "parent": "1"
      },
      "owner": {
        "display_name": "Troll"
      }
    }
    
    • 聚合文档
    GET child_example/_search?size=0
    {
      "aggs": {
        "top-tags": {
          "terms": {
            "field": "tags.keyword",
            "size": 10
          },
          "aggs": {
            "to-answers": {
              "children": {
                "type" : "b" 
              },
              "aggs": {
                "top-names": {
                  "terms": {
                    "field": "owner.display_name.keyword",
                    "size": 10
                  }
                }
              }
            }
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "top-tags" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "file-transfer",
              "doc_count" : 1,
              "to-answers" : {
                "doc_count" : 2,
                "top-names" : {
                  "doc_count_error_upper_bound" : 0,
                  "sum_other_doc_count" : 0,
                  "buckets" : [
                    {
                      "key" : "Sam",
                      "doc_count" : 1
                    },
                    {
                      "key" : "Troll",
                      "doc_count" : 1
                    }
                  ]
                }
              }
            },
    ...
    

    5.2.3 composite

    复合聚合

    POST xll/_bulk
    {"index":{}}
    { "keyword": "foo", "number": 23 }
    {"index":{}}
    { "keyword": "foo", "number": 65 }
    {"index":{}}
    { "keyword": "foo", "number": 76 }
    {"index":{}}
    { "keyword": "bar", "number": 23 }
    {"index":{}}
    { "keyword": "bar", "number": 65 }
    {"index":{}}
    { "keyword": "bar", "number": 76 }
    
    GET xll/_search
    {
      "size": 0,
      "aggs": {
        "xx": {
          "composite": {
            "sources": [
              {"ccc": {"terms": {"field": "keyword.keyword"}}},
              {"bbb":{"terms": {"field": "number"}}}
            ]
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "xx" : {
          "after_key" : {
            "ccc" : "foo",
            "bbb" : 76
          },
          "buckets" : [
            {
              "key" : {
                "ccc" : "bar",
                "bbb" : 23
              },
              "doc_count" : 1
            },
    ...
    

    5.2.4 date_histogram

    日期间隔聚合

    • calendar_interval日历间隔
      • minute m 1m
      • hour h 1h
      • day d 1d
      • week w 1w
      • month M 1M
      • quarter q 1q
      • year y 1y
    • fixed_interval固定间隔,不能用小数1.5h可以用90m代替
      • milliseconds ms,seconds s
      • minutes m
      • hours h
      • days d
    • 插入数据,聚合文档
    PUT /cars/_bulk
    { "index": {}}
    { "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
    { "index": {}}
    { "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
    { "index": {}}
    { "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
    { "index": {}}
    { "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
    { "index": {}}
    { "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
    { "index": {}}
    { "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
    { "index": {}}
    { "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
    { "index": {}}
    { "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-01" }
    
    GET cars/_search
    {
      "size": 0, 
      "aggs": {
        "x": {
          "date_histogram": {
            "field": "sold",
            "calendar_interval": "month",
            "format": "yyyy-MM-dd",
            "min_doc_count": 1
          }
        }
      }
    }
    

    结果

    • "key_as_string" : "2014-01-01",包括[2014-01-01,2014-02-01)
    ...
      "aggregations" : {
        "x" : {
          "buckets" : [
            {
              "key_as_string" : "2014-01-01",
              "key" : 1388534400000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-02-01",
              "key" : 1391212800000,
              "doc_count" : 1
            },
    ...
    
    • 使用extended_bounds扩展日期,来计算全年的情况
    GET cars/_search
    {
      "size": 0, 
      "aggs": {
        "x": {
          "date_histogram": {
            "field": "sold",
            "calendar_interval": "month",
            "format": "yyyy-MM-dd", 
            "extended_bounds": {
              "min": "2014-01-01",
              "max": "2014-12-31"
            }
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "x" : {
          "buckets" : [
            {
              "key_as_string" : "2014-01-01",
              "key" : 1388534400000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-02-01",
              "key" : 1391212800000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-03-01",
              "key" : 1393632000000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2014-04-01",
              "key" : 1396310400000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2014-05-01",
              "key" : 1398902400000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-06-01",
              "key" : 1401580800000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2014-07-01",
              "key" : 1404172800000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-08-01",
              "key" : 1406851200000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-09-01",
              "key" : 1409529600000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2014-10-01",
              "key" : 1412121600000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-11-01",
              "key" : 1414800000000,
              "doc_count" : 2
            },
            {
              "key_as_string" : "2014-12-01",
              "key" : 1417392000000,
              "doc_count" : 0
            }
          ]
        }
      }
    }
    

    间隔固定30天

    GET cars/_search
    {
      "size": 0, 
      "aggs": {
        "x": {
          "date_histogram": {
            "field": "sold",
            "fixed_interval": "30d",
            "format": "yyyy-MM-dd"
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "x" : {
          "buckets" : [
            {
              "key_as_string" : "2013-12-11",
              "key" : 1386720000000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-01-10",
              "key" : 1389312000000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-02-09",
              "key" : 1391904000000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2014-03-11",
              "key" : 1394496000000,
              "doc_count" : 0
            },
    ...
    

    5.2.5 filter

    过滤聚合,只影响聚合不影响检索

    GET cars/_search
    {
      "size": 0,
      "aggs": {
        "x": {
          "filter": {
            "range": {"price": {"gte": 25000}}
          },
          "aggs": {
            "x": {"terms": {"field": "price"}}
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "x" : {
          "doc_count" : 3,
          "x" : {
            "doc_count_error_upper_bound" : 0,
            "sum_other_doc_count" : 0,
            "buckets" : [
              {
                "key" : 25000,
                "doc_count" : 1
              },
              {
                "key" : 30000,
                "doc_count" : 1
              },
              {
                "key" : 80000,
                "doc_count" : 1
              }
            ]
          }
        }
      }
    }
    

    5.2.6 filters

    过滤聚合

    • 插入文档,聚合文档
    PUT /logs/_bulk
    { "index" : { "_id" : 1 } }
    { "body" : "warning: page could not be rendered" }
    { "index" : { "_id" : 2 } }
    { "body" : "authentication error" }
    { "index" : { "_id" : 3 } }
    { "body" : "warning: connection timed out" }
    { "index" : { "_id" : 4 } }
    { "body": "info: user Bob logged out" }
    
    GET logs/_search
    {
      "size": 0,
      "aggs": {
        "x": {
          "filters": {
            "filters": {
               "error":{"match":{"body":"error"}},
               "warning":{"match":{"body":"warning"}}
            }
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "x" : {
          "buckets" : {
            "error" : {
              "doc_count" : 1
            },
            "warning" : {
              "doc_count" : 2
            }
          }
        }
      }
    }
    

    匿名filters聚合

    GET logs/_search
    {
      "size": 0,
      "aggs": {
        "x": {
          "filters": {
            "filters": [
               {"match":{"body":"error"}},
               {"match":{"body":"warning"}}
            ]
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "x" : {
          "buckets" : [
            {
              "doc_count" : 1
            },
            {
              "doc_count" : 2
            }
          ]
        }
      }
    }
    

    其他桶

    • "other_bucket": true默认桶名称_other_
    • "other_bucket_key": "oooo"自定义桶名称,指定了这个可以省略other_bucket
    GET logs/_search
    {
      "size": 0,
      "aggs": {
        "x": {
          "filters": {
            "filters": {
               "error":{"match":{"body":"error"}},
               "warning":{"match":{"body":"warning"}}
            },
            "other_bucket_key": "oooo"
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "x" : {
          "buckets" : {
            "error" : {
              "doc_count" : 1
            },
            "warning" : {
              "doc_count" : 2
            },
            "oooo" : {
              "doc_count" : 1
            }
          }
        }
      }
    }
    

    5.2.7 global

    全局聚合,对其他桶无关

    • avg_price计算所有产品的平均价格
    • t_shirts计算所有T恤价格
    POST /sales/_search?size=0
    {
        "query" : {
            "match" : { "type" : "t-shirt" }
        },
        "aggs" : {
            "all_products" : {
                "global" : {}, 
                "aggs" : { 
                    "avg_price" : { "avg" : { "field" : "price" } }
                }
            },
            "t_shirts": { "avg" : { "field" : "price" } }
        }
    }
    

    结果

    {
        ...
        "aggregations" : {
            "all_products" : {
                "doc_count" : 7, 
                "avg_price" : {
                    "value" : 140.71428571428572 
                }
            },
            "t_shirts": {
                "value" : 128.33333333333334 
            }
        }
    }
    

    5.2.8 histogram

    数值间隔聚合

    POST /sales/_search?size=0
    {
        "aggs" : {
            "prices" : {
                "histogram" : {
                    "field" : "price",
                    "interval" : 50
                }
            }
        }
    }
    

    结果

    {
        ...
        "aggregations": {
            "prices" : {
                "buckets": [
                    {
                        "key": 0.0,
                        "doc_count": 1
                    },
                    {
                        "key": 50.0,
                        "doc_count": 1
                    },
                    {
                        "key": 100.0,
                        "doc_count": 0
                    },
                    {
                        "key": 150.0,
                        "doc_count": 2
                    },
                    {
                        "key": 200.0,
                        "doc_count": 3
                    }
                ]
            }
        }
    }
    

    最小文档数

    POST /sales/_search?size=0
    {
        "aggs" : {
            "prices" : {
                "histogram" : {
                    "field" : "price",
                    "interval" : 50,
                    "min_doc_count" : 1
                }
            }
        }
    }
    

    结果

    {
        ...
        "aggregations": {
            "prices" : {
                "buckets": [
                    {
                        "key": 150.0,
                        "doc_count": 2
                    },
                    {
                        "key": 200.0,
                        "doc_count": 3
                    }
                ]
            }
        }
    }
    

    扩展范围

    POST /sales/_search?size=0
    {
        "query" : {
            "constant_score" : { "filter": { "range" : { "price" : { "to" : "500" } } } }
        },
        "aggs" : {
            "prices" : {
                "histogram" : {
                    "field" : "price",
                    "interval" : 50,
                    "extended_bounds" : {
                        "min" : 0,
                        "max" : 500
                    }
                }
            }
        }
    }
    

    5.2.9 missing

    缺失聚合

    • 字段值为null
    • 字段值为[]
    • 字段长度超出ignore_above限制
    • 字段格式错误,设置了"ignore_malformed":true
    GET abv/_search
    {
      "size": 0, 
      "aggs": {
        "x": {
          "missing": {
            "field": "a.keyword"
          }
        }
      }
    }
    

    结果,可以再嵌套聚合查询桶内的_id

    ...
      "aggregations" : {
        "x" : {
          "doc_count" : 2
        }
      }
    }
    

    5.2.10 nested

    嵌套聚合

    • 创建映射,插入文档,聚合文档
    PUT /products
    {
        "mappings": {
            "properties" : {
                "resellers" : { 
                    "type" : "nested",
                    "properties" : {
                        "reseller" : { "type" : "text" },
                        "price" : { "type" : "double" }
                    }
                }
            }
        }
    }
    
    PUT /products/_doc/0
    {
      "name": "LED TV", 
      "resellers": [
        {
          "reseller": "companyA",
          "price": 350
        },
        {
          "reseller": "companyB",
          "price": 500
        }
      ]
    }
    
    GET /products/_search
    {
        "query" : {
            "match" : { "name" : "led tv" }
        },
        "aggs" : {
            "x" : {
                "nested" : {
                    "path" : "resellers"
                },
                "aggs" : {
                    "min_price" : { "min" : { "field" : "resellers.price" } }
                }
            }
        }
    }
    

    结果

    ...
      "aggregations" : {
        "x" : {
          "doc_count" : 2,
          "min_price" : {
            "value" : 350.0
          }
        }
      }
    }
    

    5.2.11 parent

    父级聚合

    • 创建映射,插入文档,聚合文档
    PUT parent_example
    {
      "mappings": {
         "properties": {
           "join": {
             "type": "join",
             "relations": {
               "a": "b"
             }
           }
         }
      }
    }
    
    PUT parent_example/_doc/1
    {
      "join": {
        "name": "a"
      },
      "tags": [
        "windows-server-2003",
        "windows-server-2008",
        "file-transfer"
      ]
    }
    
    PUT parent_example/_doc/2?routing=1
    {
      "join": {
        "name": "b",
        "parent": "1"
      },
      "owner": {
        "display_name": "Sam"
      }
    }
    
    PUT parent_example/_doc/3?routing=1&refresh
    {
      "join": {
        "name": "b",
        "parent": "1"
      },
      "owner": {
        "display_name": "Troll"
      }
    }
    
    POST parent_example/_search?size=0
    {
      "aggs": {
        "top-names": {
          "terms": {
            "field": "owner.display_name.keyword",
            "size": 10
          },
          "aggs": {
            "to-questions": {
              "parent": {
                "type" : "b" 
              },
              "aggs": {
                "top-tags": {
                  "terms": {
                    "field": "tags.keyword",
                    "size": 10
                  }
                }
              }
            }
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "top-names" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "Sam",
              "doc_count" : 1,
              "to-questions" : {
                "doc_count" : 1,
                "top-tags" : {
                  "doc_count_error_upper_bound" : 0,
                  "sum_other_doc_count" : 0,
                  "buckets" : [
                    {
                      "key" : "file-transfer",
                      "doc_count" : 1
                    },
                    {
                      "key" : "windows-server-2003",
                      "doc_count" : 1
                    },
                    {
                      "key" : "windows-server-2008",
                      "doc_count" : 1
                    }
                  ]
                }
              }
            },
            {
              "key" : "Troll",
              "doc_count" : 1,
              ...
            }
          ]
        }
      }
    }
    

    5.2.12 range

    范围聚合

    • 创建文档,聚合文档
    • {"to": 102}表示[最小值,102)
    • {"from": 102,"to":104}表示[102,104)
    • {"from": 104}表示[104,最大值]
    PUT bnm/_bulk
    {"index":{"_id":1}}
    {"a":101}
    {"index":{"_id":2}}
    {"a":102}
    {"index":{"_id":3}}
    {"a":103}
    {"index":{"_id":4}}
    {"a":104}
    {"index":{"_id":5}}
    {"a":105}
    {"index":{"_id":6}}
    {"a":106}
    
    GET bnm/_search
    {
      "size": 0,
      "aggs": {
        "x": {
          "range": {
            "field": "a",
            "ranges": [
              {"to": 102},
              {"from": 102,"to":104},
              {"from": 104}
            ]
          }
        }
      }
    }
    

    结果

      "aggregations" : {
        "x" : {
          "buckets" : [
            {
              "key" : "*-102.0",
              "to" : 102.0,
              "doc_count" : 1
            },
            {
              "key" : "102.0-104.0",
              "from" : 102.0,
              "to" : 104.0,
              "doc_count" : 2
            },
            {
              "key" : "104.0-*",
              "from" : 104.0,
              "doc_count" : 3
            }
          ]
        }
      }
    }
    

    自定义每个范围名称名称

    GET bnm/_search
    {
      "size": 0,
      "aggs": {
        "x": {
          "range": {
            "field": "a",
            "ranges": [
              {"key": "one", "to": 102},
              {"key": "two", "from": 102,"to":104},
              {"key": "three", "from": 104}
            ]
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "x" : {
          "buckets" : [
            {
              "key" : "one",
              "to" : 102.0,
              "doc_count" : 1
            },
            {
              "key" : "two",
              "from" : 102.0,
              "to" : 104.0,
              "doc_count" : 2
            },
            {
              "key" : "three",
              "from" : 104.0,
              "doc_count" : 3
            }
          ]
        }
      }
    }
    

    5.2.13 terms

    分组

    • field需要分组的字段"field":"a"
    • min_doc_count匹配最小文档数"min_doc_count":1
    • order排序,根据桶的key降序,也可以使用_count代表文档数 "order": {"_key": "desc"}
    • size要显示的记录数"size":3
    • exclude要排除的值,例如排除key为102的值"exclude": ["102"]
    • include只包含哪些值,例如只包含key为102的值"include": ["102"]

    聚合文档

    • a2>a3.variance 表示"a2"中的"a3"的"variance"属性
    • 按照价格两万一次分割,过滤了只取"red","green"一共6个文档,并且根据分割块进行价格计算扩展统计,
    • 根据分割每一块的扩展统计的方差来升序排列,并且排除分割内至少数量为1
    • 这里"a1"//单值桶 "a2"//多值桶 "a3"//度量指标
    GET cars/_search
    {
      "size": 0,
      "aggs": {
        "a1": {
          "histogram": {
            "field": "price",
            "interval": 20000,
            "min_doc_count": 1, 
            "order": {"a2>a3.variance": "asc"}
          },
        "aggs": {
          "a2": {
            "filter": {
              "terms": {"color": ["red","green"]}
            },
          "aggs": {
            "a3": {
              "extended_stats": {"field": "price"}
            }
          }
          }
        }
        }
      }
    }
    

    结果

    ...
      "aggregations": {
        "a1": {//多值桶
          "buckets": [
            {
              "key": 80000,//[80000,100000)有1条
              "doc_count": 1,
              "a2": {//单值桶
                "doc_count": 1,//[80000,100000) 并且属于["red","green"]有1条
                "a3": {
                  "count": 1,
                  "min": 80000,
                  "max": 80000,
                  "avg": 80000,
                  "sum": 80000,
                  "sum_of_squares": 6400000000,
                  "variance": 0,//属于["red","green"]1条的方差
                  "std_deviation": 0,
                  "std_deviation_bounds": {
                    "upper": 80000,
                    "lower": 80000
                  }
                }
              }
            },...
    

    5.3.0 管道聚合

    5.3.1 avg_bucket

    桶平均值

    • 插入文档
    PUT gg/_bulk
    {"index":{"_id":1}}
    {"x":"x1","y":11}
    {"index":{"_id":2}}
    {"x":"x2","y":22}
    {"index":{"_id":3}}
    {"x":"x1","y":33}
    {"index":{"_id":4}}
    {"x":"x3","y":44}
    {"index":{"_id":5}}
    {"x":"x2","y":55}
    
    • 聚合文档
    • 计算分组的sum值的平均值
    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "terms": {
            "field": "x.keyword"
          },
          "aggs": {
            "f11": {
              "sum": {
                "field": "y"
              }
            }
          }
        },
        "f2":{
          "avg_bucket": {
            "buckets_path": "f1>f11"
          }
        }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "x1",
              "doc_count" : 2,
              "f11" : {
                "value" : 44.0
              }
            },
            {
              "key" : "x2",
              "doc_count" : 2,
              "f11" : {
                "value" : 77.0
              }
            },
            {
              "key" : "x3",
              "doc_count" : 1,
              "f11" : {
                "value" : 44.0
              }
            }
          ]
        },
        "f2" : {
          "value" : 55.0
        }
      }
    }
    

    5.3.2 derivative

    桶衍生

    • 插入文档
    PUT gg/_bulk
    {"index":{"_id":1}}
    {"x":"2019-01-05","y":11}
    {"index":{"_id":2}}
    {"x":"2019-02-15","y":22}
    {"index":{"_id":3}}
    {"x":"2019-01-05","y":33}
    {"index":{"_id":4}}
    {"x":"2019-03-18","y":44}
    {"index":{"_id":5}}
    {"x":"2019-03-27","y":55}
    
    • 一阶衍生
    • f12为当前f11减去上一个f11
    • 第一个不会显示f12 因为它没有上一个
    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "sum": {"field": "y"}
            },
            "f12":{
              "derivative": {"buckets_path": "f11"}
            }
          }
        }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 2,
              "f11" : {
                "value" : 44.0
              }
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 22.0
              },
              "f12" : {
                "value" : -22.0
              }
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 2,
              "f11" : {
                "value" : 99.0
              },
              "f12" : {
                "value" : 77.0
              }
            }
          ]
        }
      }
    }
    
    • 二阶衍生
    • f12为当前f11减去上一个f11
    • f13为当前f12减去上一个f12
    • 第一个不会显示f12 因为它没有上一个
    • 第一个 第二个都不会显示f13 因为它们都没有上一个
    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "sum": {"field": "y"}
            },
            "f12":{
              "derivative": {"buckets_path": "f11"}
            },
            "f13":{
              "derivative": {"buckets_path": "f12"}
            }
          }
        }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 2,
              "f11" : {
                "value" : 44.0
              }
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 22.0
              },
              "f12" : {
                "value" : -22.0
              }
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 2,
              "f11" : {
                "value" : 99.0
              },
              "f12" : {
                "value" : 77.0
              },
              "f13" : {
                "value" : 99.0
              }
            }
          ]
        }
      }
    }
    
    • 给一阶衍生的f12加一个属性normalized_value
    • 设置"unit": "day" -> 当前的normalized_value表示当前的f12除以当前的key_as_string减去上一个key_as_string的天数
    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "sum": {"field": "y"}
            },
            "f12":{
              "derivative": {
                "buckets_path": "f11",
                "unit": "day"
              }
            }
          }
        }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 2,
              "f11" : {
                "value" : 44.0
              }
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 22.0
              },
              "f12" : {
                "value" : -22.0,
                "normalized_value" : -0.7096774193548387
              }
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 2,
              "f11" : {
                "value" : 99.0
              },
              "f12" : {
                "value" : 77.0,
                "normalized_value" : 2.75
              }
            }
          ]
        }
      }
    }
    

    5.3.3 max_bucket

    桶最大值

    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "sum": {"field": "y"}
            }
          }
        },
        "f12":{
              "max_bucket": {"buckets_path": "f1>f11"}
            }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 2,
              "f11" : {
                "value" : 44.0
              }
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 22.0
              }
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 2,
              "f11" : {
                "value" : 99.0
              }
            }
          ]
        },
        "f12" : {
          "value" : 99.0,
          "keys" : [
            "2019-03-01"
          ]
        }
      }
    }
    

    5.3.4 min_bucket

    桶最小值

    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "sum": {"field": "y"}
            }
          }
        },
        "f12":{
              "min_bucket": {"buckets_path": "f1>f11"}
            }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 2,
              "f11" : {
                "value" : 44.0
              }
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 22.0
              }
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 2,
              "f11" : {
                "value" : 99.0
              }
            }
          ]
        },
        "f12" : {
          "value" : 22.0,
          "keys" : [
            "2019-02-01"
          ]
        }
      }
    }
    

    5.3.5 sum_bucket

    桶求和

    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "sum": {"field": "y"}
            }
          }
        },
        "f12":{
              "sum_bucket": {"buckets_path": "f1>f11"}
            }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 2,
              "f11" : {
                "value" : 44.0
              }
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 22.0
              }
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 2,
              "f11" : {
                "value" : 99.0
              }
            }
          ]
        },
        "f12" : {
          "value" : 165.0
        }
      }
    }
    

    5.3.6 stats_bucket

    桶统计

    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "sum": {"field": "y"}
            }
          }
        },
        "f12":{
              "stats_bucket": {"buckets_path": "f1>f11"}
            }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 2,
              "f11" : {
                "value" : 44.0
              }
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 22.0
              }
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 2,
              "f11" : {
                "value" : 99.0
              }
            }
          ]
        },
        "f12" : {
          "count" : 3,
          "min" : 22.0,
          "max" : 99.0,
          "avg" : 55.0,
          "sum" : 165.0
        }
      }
    }
    

    5.3.7 extended_stats_bucket

    桶扩展统计

    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "sum": {"field": "y"}
            }
          }
        },
        "f12":{
              "extended_stats_bucket": {"buckets_path": "f1>f11"}
            }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 2,
              "f11" : {
                "value" : 44.0
              }
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 22.0
              }
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 2,
              "f11" : {
                "value" : 99.0
              }
            }
          ]
        },
        "f12" : {
          "count" : 3,
          "min" : 22.0,
          "max" : 99.0,
          "avg" : 55.0,
          "sum" : 165.0,
          "sum_of_squares" : 12221.0,
          "variance" : 1048.6666666666667,
          "std_deviation" : 32.38312317653544,
          "std_deviation_bounds" : {
            "upper" : 119.76624635307088,
            "lower" : -9.766246353070883
          }
        }
      }
    }
    

    5.3.8 cumulative_sum

    桶累加

    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "sum": {"field": "y"}
            },
            "f12":{
              "cumulative_sum": {"buckets_path": "f11"}
            }
          }
        }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 2,
              "f11" : {
                "value" : 44.0
              },
              "f12" : {
                "value" : 44.0
              }
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 22.0
              },
              "f12" : {
                "value" : 66.0
              }
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 2,
              "f11" : {
                "value" : 99.0
              },
              "f12" : {
                "value" : 165.0
              }
            }
          ]
        }
      }
    }
    

    5.3.9 cumulative_cardinality

    桶累加基数

    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "cardinality": {"field": "y"}
            },
            "f12":{
              "cumulative_cardinality": {"buckets_path": "f11"}
            }
          }
        }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 2,
              "f11" : {
                "value" : 2
              },
              "f12" : {
                "value" : 2
              }
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 1
              },
              "f12" : {
                "value" : 3
              }
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 2,
              "f11" : {
                "value" : 2
              },
              "f12" : {
                "value" : 5
              }
            }
          ]
        }
      }
    }
    

    5.3.10 bucket_sort

    桶排序

    • f11桶进行排序,排除第1个,显示前2条
    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "sum": {"field": "y"}
            },
            "f12":{
              "bucket_sort": {
                "sort": [
                  {"f11":{"order":"desc"}}
                  ],
                "from": 1,
                "size": 2
              }
            }
          }
        }
      }
    }
    

    结果

    ...
      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 2,
              "f11" : {
                "value" : 44.0
              }
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 22.0
              }
            }
          ]
        }
      }
    }
    
    • 不排序,只对数据进行截断
    GET gg/_search
    {
      "size": 0,
      "aggs": {
        "f1": {
          "date_histogram": {
            "field": "x",
            "calendar_interval":"month",
            "min_doc_count": 1,
            "format": "yyyy-MM-dd"
          },
          "aggs": {
            "f11": {
              "sum": {"field": "y"}
            },
            "f12":{
              "bucket_sort": {
                "from": 1,
                "size": 2
              }
            }
          }
        }
      }
    }
    

    结果

      "aggregations" : {
        "f1" : {
          "buckets" : [
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 1,
              "f11" : {
                "value" : 22.0
              }
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 2,
              "f11" : {
                "value" : 99.0
              }
            }
          ]
        }
      }
    }
    
  • 相关阅读:
    java中Annotation注解的定义与使用
    ABC184 D——F && 一道LC好题
    YZYのPython 作业~
    杂谈(11.13——lca && mst)
    树状数组(BIT)—— 一篇就够了
    Codeforces Round #673 (Div. 2)[A-E]
    Codeforces Round #674 (Div. 3)
    Educational Codeforces Round 95 (Rated for Div. 2) [A -- E]
    LEETCODE 第 205 场周赛
    Codeforces Round #662 (Div. 2)
  • 原文地址:https://www.cnblogs.com/taopanfeng/p/11684460.html
Copyright © 2020-2023  润新知