• HDU2602Bone Collector(DP,0/1背包)


    题目连接

    解题报告:

    结合算法竞赛入门经典(刘汝佳), 算法设计与分析(郑宗汉,郑晓明)花了一天才算弄懂0/1背包思想,当然仅仅是入门而已

    给定一个载重量为M, n个重量为wi,价值为pi的物体,1<=i<=n, 每个物品xi都有两种状态,即放入(0)和不放入(1),即xi=0或xi=1

    使得价值最大。

       

    状态转移方程为f[i][j]=max{f[i-1][j],f[i-1][v-w[i]]+p[i]}

    一篇博客介绍的相当不错。

    (里面介绍的思路(设的变量名称可能会不一样):

    问题的特点是:每种物品一件,可以选择放1或不放0。

    用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

    f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

    这个方程非常重要,据说基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以详细的查了一下这个方程的含义:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

    在有的地方看到的背包问题题目中,有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同

    如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

    如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0

    为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

    另外, 我在提交的过程中WA了很多次。

    原因是

    第一种方法中的for(j=0; j<=v; j++)写成了for(j=1; j<=v; j++)

    或者是第二种方法中的for(j=v; j>=0; j--)写成了for(j=v; j>=1; j--)

    这是不对的。。为什么呢。。因为可能会有体积为0,但却有价值的骨头。。。

    总之对于该题的代码如下:

    View Code
    #include <stdio.h>
    
    #define MAXN 1002
    
    int dp[MAXN][MAXN], w[MAXN], p[MAXN];
    
    int _max(int a, int b){
        return a > b ? a : b;
    }
    
    int main(){
    
        int n, v, T, i, j;
        scanf("%d", &T);
        while(T--){
            scanf("%d %d", &n, &v);
            for(i=1; i<=n; i++){
                scanf("%d", &w[i]);
            }
            for(i=1; i<=n; i++){
                scanf("%d", &p[i]);
            }
            for(i=0; i<=n; i++) dp[i][0] = 0;
            for(i=0; i<=v; i++) dp[0][i] = 0;
            
            for(i=1; i<=n; i++){
                for(j=0; j<=v; j++){
                    dp[i][j] = dp[i-1][j];
                    if(j>=p[i]) dp[i][j] = _max(dp[i-1][j], dp[i-1][j-p[i]]+w[i]);
                }
            }
            printf("%d\n", dp[n][v]);
        }
    
        return 0;
    }

    将数组变为一维的代码:

    View Code
    #include <stdio.h>
    #include <string.h>
    
    #define MAXN 1002
    
    int max_num(int a, int b){
        return a > b? a : b;
    }
    
    int dp[MAXN], w[MAXN], p[MAXN];
    
    int main(){
    
        int n, v, T, i, j;
        scanf("%d", &T);
        while(T--){
            scanf("%d %d", &n, &v);
            for(i=1; i<=n; i++){
                scanf("%d", &w[i]);
            }
            for(i=1; i<=n; i++){
                scanf("%d", &p[i]);
            }
            for(i=0; i<=v; i++){
                dp[i] = 0;
            }
            for(i=1; i<=n; i++){
                for(j=v; j>=0; j--){
                    if(j>=p[i]) dp[j] = max_num(dp[j], dp[j-p[i]]+w[i]);
                }
            }
            printf("%d\n", dp[v]);
        }
    
        return 0;
    }
  • 相关阅读:
    SAP库存账龄分析报表
    elasticsearch 同义词配置搜索
    elasticsearch 上下文
    git 修改源路径 修改项目地址
    intellij IDEA 无限试用
    Kubernetes 安装Redis集群
    helm安装ingress
    安装Helm
    Kubernetes Rook + Ceph
    GIT 将工作区恢复到上次提交的内容 commit your changes or stash them before you can merge Your local changes to the following files would be overwritten by merge
  • 原文地址:https://www.cnblogs.com/tanhehe/p/2910144.html
Copyright © 2020-2023  润新知