- 概述
RNN是递归神经网络,它提供了一种解决深度学习的另一个思路,那就是每一步的输出不仅仅跟当前这一步的输入有关,而且还跟前面和后面的输入输出有关,尤其是在一些NLP的应用中,经常会用到,例如在NLP中,每一个输出的Word,都跟整个句子的内容都有关系,而不仅仅跟某一个词有关。LSTM是RNN的一种升级版本,它的核心思想跟RNN是一样的,但是它透过一下方法避免了一些RNN的缺点。那么下面就逐步的解析一下RNN和LSTM的结构,然后分析一下它们的原理吧。
- RNN解析
要理解RNN,咱们得先来看一下RNN的结构,然后就来解释一下它的原理
上图中左边的图是一个RNN网络结构中总体的图,右边的图片是一个RNN Cell里面的具体细节; 从上面的左边的图咱们可以看出,一个RNN的网络结构中,无论RNNcell循环多少次,它的weights都是share的,即一个weights只有一份copy, 而每一步的Hidden state(即右图中的a<t>和a<t-1>)是不同的,每一个time step它都有一份hidden state的copy。从上面的图片分析来看, RNN的每一步的输入不单单是有X<t>, 而且还有有前面的time step中学习来的hidden state - a<t-1>。这就实现了咱们前面的需求了,让每一步的输出不仅仅跟当前的输入有关,还得跟前面的输入有关。具体的代码实现这个RNN cell的方法,你们可以参考下面的代码来加深对RNN的理解,实际在TensorFlow中来应用RNN的话,其实非常简单,就是一句代码就搞定了,但是,这里我还是贴出RNN cell创建的源码方便大家理解
def rnn_cell(xt, a_prev, parameters): """ Implements a single forward step of the RNN-cell as described Arguments: xt -- your input data at timestep "t", numpy array of shape (n_x, m). a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m) parameters -- python dictionary containing: Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x) Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a) Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) ba -- Bias, numpy array of shape (n_a, 1) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a_next -- next hidden state, of shape (n_a, m) yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m) cache -- tuple of values needed for the backward pass, contains (a_next, a_prev, xt, parameters) """ # Retrieve parameters from "parameters" Wax = parameters["Wax"] Waa = parameters["Waa"] Wya = parameters["Wya"] ba = parameters["ba"] by = parameters["by"] # compute next activation state using the formula given above a_next = np.tanh(Wax.dot(xt)+Waa.dot(a_prev)+ba) # compute output of the current cell using the formula given above yt_pred = softmax(Wya.dot(a_next)+by) # store values you need for backward propagation in cache cache = (a_next, a_prev, xt, parameters) return a_next, yt_pred, cache np.random.seed(1) xt_tmp = np.random.randn(3,10) a_prev_tmp = np.random.randn(5,10) parameters_tmp = {} parameters_tmp['Waa'] = np.random.randn(5,5) parameters_tmp['Wax'] = np.random.randn(5,3) parameters_tmp['Wya'] = np.random.randn(2,5) parameters_tmp['ba'] = np.random.randn(5,1) parameters_tmp['by'] = np.random.randn(2,1) a_next_tmp, yt_pred_tmp, cache_tmp = rnn_cell_forward(xt_tmp, a_prev_tmp, parameters_tmp) print("a_next[4] = ", a_next_tmp[4]) print("a_next.shape = ", a_next_tmp.shape) print("yt_pred[1] =", yt_pred_tmp[1]) print("yt_pred.shape = ", yt_pred_tmp.shape) print( a_next_tmp[:,:]) print( a_next_tmp[:,0])
- LSTM解析
根据上面的RNN的结构图片,你们仔细的看一下有没有什么缺点。如果怎么的RNN需要循环很多次的话,咱们可能会有丢失信息的可能,就是gradient vanishing的情况发生,如果gradient vanishing的情况发生的话,它就不会继续学习咱们的信息了,就变成了standard neuro network了,RNN就失去了意义了。而且,咱们的sequence越长(即:循环的次数越多),gradient vanishing的可能性就越大。这个时候,咱们就有必要优化咱们的RNN了,让优化了的结构不但能够不断的学习能力,还能够有记忆功能,能把咱们学习的主要的东西能够记住,这就让咱们的RNN进化到了LSTM(Long short term memory)阶段了。为了能够更好的解释LSTM的网络结构,咱们还是先来看一些它就结构图片,然后再来解释一下吧
上图是一个LSTM cell的基本结构,这个图有有些不重要的元素,我都省略了,主要留下了一些最重要的信息。首先对比RNN, 咱们可以看出咱们多了3个gate和一个memory cell - C<t>。这个memory cell也称作internal hidden state。那么咱们来看看这个三个gate到底是干什么的。第一个gate是forget gate,它是帮助咱们的memory cell删除(或者称之为过滤)掉一些不重要的信息的,这个gate的值是在[0,1]这个区间,一般咱们用sigmoid函数来运算了,然后再和C来做element-wise的乘法运算,如果forget gate中的值趋向于0就删除掉相应的信息,如果forget gate中的值趋向于1则保留相应的值。第二个gate是update gate; 这个gate要跟咱们candidate memory cell来共同作用来产生新的信息,它们两个进行element-wise的相乘运算后,再跟咱们经过forget gate后的memory cell来进行element-wise的相加匀速,相当于把咱们从当前time step中学习到的信息添加到咱们的memory cell中。第三个gate就是output gate了;顾名思义就是过滤咱们输出的hidden state的, 这个gate也是sigmoid函数,根据前一个hidden state a<t-1> 和当前time step的输入 X<t>来共同决定的,它跟经过forget gate和update gate处理后的memory cell 的tanh值进行element-wise相乘过后,得到了了咱们当前time step的hidden state-a<t>,同时还得到了咱们当前time step的memory cell值;从这里咱们也可以看出output hidden state-a<t>和internal hidden state(memory cell)的dimension是一样的。上面解释了一下一个LSTM Cell中具体的结构跟功能。为了能够更好的加深大家对于LSTM的理解,我还是用代码演示一下如何构建一个LSTM cell, 代码如下所示:
def lstm_cell(xt, a_prev, c_prev, parameters): """ Implement a single forward step of the LSTM-cell as described in Figure (4) Arguments: xt -- your input data at timestep "t", numpy array of shape (n_x, m). a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m) c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m) parameters -- python dictionary containing: Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) bf -- Bias of the forget gate, numpy array of shape (n_a, 1) Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) bi -- Bias of the update gate, numpy array of shape (n_a, 1) Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x) bc -- Bias of the first "tanh", numpy array of shape (n_a, 1) Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x) bo -- Bias of the output gate, numpy array of shape (n_a, 1) Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a_next -- next hidden state, of shape (n_a, m) c_next -- next memory state, of shape (n_a, m) yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m) cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters) Note: ft/it/ot stand for the forget/update/output gates, cct stands for the candidate value (c tilde), c stands for the cell state (memory) """ # Retrieve parameters from "parameters" Wf = parameters["Wf"] # forget gate weight bf = parameters["bf"] Wi = parameters["Wi"] # update gate weight (notice the variable name) bi = parameters["bi"] # (notice the variable name) Wc = parameters["Wc"] # candidate value weight bc = parameters["bc"] Wo = parameters["Wo"] # output gate weight bo = parameters["bo"] Wy = parameters["Wy"] # prediction weight by = parameters["by"] # Retrieve dimensions from shapes of xt and Wy n_x, m = xt.shape n_y, n_a = Wy.shape ### START CODE HERE ### # Concatenate a_prev and xt concat = np.concatenate((a_prev, xt), axis=0) # Compute values for ft (forget gate), it (update gate), # cct (candidate value), c_next (cell state), # ot (output gate), a_next (hidden state) ft = sigmoid(Wf.dot(concat)+bf) # forget gate it = sigmoid(Wi.dot(concat)+bi) # update gate cct = np.tanh(Wc.dot(concat)+bc) # candidate value c_next = c_prev*ft + cct*it # cell state ot = sigmoid(Wo.dot(concat)+bo) # output gate a_next = ot*np.tanh(c_next) # hidden state # Compute prediction of the LSTM cell yt_pred = softmax(Wy.dot(a_next)+by) ### END CODE HERE ### # store values needed for backward propagation in cache cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) return a_next, c_next, yt_pred, cache np.random.seed(1) xt_tmp = np.random.randn(3,10) a_prev_tmp = np.random.randn(5,10) c_prev_tmp = np.random.randn(5,10) parameters_tmp = {} parameters_tmp['Wf'] = np.random.randn(5, 5+3) parameters_tmp['bf'] = np.random.randn(5,1) parameters_tmp['Wi'] = np.random.randn(5, 5+3) parameters_tmp['bi'] = np.random.randn(5,1) parameters_tmp['Wo'] = np.random.randn(5, 5+3) parameters_tmp['bo'] = np.random.randn(5,1) parameters_tmp['Wc'] = np.random.randn(5, 5+3) parameters_tmp['bc'] = np.random.randn(5,1) parameters_tmp['Wy'] = np.random.randn(2,5) parameters_tmp['by'] = np.random.randn(2,1) a_next_tmp, c_next_tmp, yt_tmp, cache_tmp = lstm_cell_forward(xt_tmp, a_prev_tmp, c_prev_tmp, parameters_tmp) print("a_next[4] = ", a_next_tmp[4]) print("a_next.shape = ", c_next_tmp.shape) print("c_next[2] = ", c_next_tmp[2]) print("c_next.shape = ", c_next_tmp.shape) print("yt[1] =", yt_tmp[1]) print("yt.shape = ", yt_tmp.shape) print("cache[1][3] = ", cache_tmp[1][3]) print("len(cache) = ", len(cache_tmp))
- 总结
上面的两个部分主要介绍了RNN和LSTM的结构,以及分析了它们结构内部的功能和流程。并且分别在每一个cell后面都用Python展示了如何用代码去构建一个RNN cell和LSTM cell。咱们可以理解LSTM是对RNN的一种优化,同时要明白为什么要进行这样的优化;其次最重要的是理解RNN的这样一种新的解决问题的方法和思路,这跟咱们之前见过的standard neuro network最明显的一个区别就是,之前在神经网络,regressor 或者classfier中,每一个输出只跟咱们的输入features相关, 而RNN的思路则是不仅仅跟当前的输入有关,还跟前面的输入有关,这在以前sequence model中是非常常见的,例如Language modeling, machine translation等等的应用中,都是要用到RNN的思想的。