• hdu 3714 Error Curves(三分)


    Error Curves

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1198    Accepted Submission(s): 460


    Problem Description
    Josephina is a clever girl and addicted to Machine Learning recently. She
    pays much attention to a method called Linear Discriminant Analysis, which
    has many interesting properties.
    In order to test the algorithm's efficiency, she collects many datasets.
    What's more, each data is divided into two parts: training data and test
    data. She gets the parameters of the model on training data and test the
    model on test data. To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.



    It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimum which related to multiple quadric functions. The new function F(x) is defined as follows: F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function. Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
     


    Input
    The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n (n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
     


    Output
    For each test case, output the answer in a line. Round to 4 digits after the decimal point.
     


    Sample Input
    2 1 2 0 0 2 2 0 0 2 -4 2
     


    Sample Output
    0.0000 0.5000
     


    Author
    LIN, Yue
     


    Source
     


    Recommend
    zhouzeyong
     
     
    该题欲求众多二次函数中当x为0-1000之间的每个值的时候函数最大值,
    将所有最大值求出输出最小的一个便可以,
    解决方法:三分,
    中间更新区间的时候调换一下位置即可,因为本体求得是最小值
     
    ps:esp取1e-8的时候过不去,为WA,当开到1e-9的时候就过去了,原因可能是本题答案要求输出4位小数点,而在计算二次函数的时候计算了x*x会生成8位小数,所有保留9位小数才能保证精度不受损失
    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    int n;
    struct node{
      double a,b,c;
    }que[10005];
    double esp=1e-9;
    double ff(double x){
         double tmax=que[0].a*x*x+que[0].b*x+que[0].c;
         for(int i=1;i<n;i++){
            tmax=max(tmax,que[i].a*x*x+que[i].b*x+que[i].c);
         }
       return tmax;
    }
    
    void calculate(){
        double l=0,r=1000.0;
        double ans1,ans2;
        while(l+esp<r){
           double mid=(l+r)/2.0;
           double midmid=(mid+r)/2.0;
            ans1=ff(mid);
            ans2=ff(midmid);
           if(ans1<ans2){
               r=midmid;
           }
           else
           l=mid;
    
        }
        printf("%.4lf
    ",ans1);
    }
    
    int main(){
        int t;
        scanf("%d",&t);
        while(t--){
            memset(que,0,sizeof(que));
          scanf("%d",&n);
          for(int i=0;i<n;i++){
              scanf("%lf%lf%lf",&que[i].a,&que[i].b,&que[i].c);
    
          }
          calculate();
        }
        return 0;
    }
  • 相关阅读:
    Security » Authorization » 要求处理器中的依赖注入
    Security » Authorization » 基于自定义策略的授权
    Security » Authorization » 基于声明的授权
    Security » Authorization » 基于角色的授权
    CentOS下下载软件,不安装的方法
    rsync+sersync+inotify实现服务器间文件同步之一
    linux查看机器负载
    htpasswd建立和更新存储用户名、密码
    由异常掉电问题---谈xfs文件系统
    Flashcache基本使用及注意事项
  • 原文地址:https://www.cnblogs.com/13224ACMer/p/4758378.html
Copyright © 2020-2023  润新知