• convolution-卷积神经网络


    训练mnist数据集

    结构组成:

    input_image --> convolution1 --> pool1 --> convolution2 --> pool2 --> full_connecion1 --> full_connection2
    # 卷积
    import tensorflow as tf
    
    import input_data
    
    # 加载mnist数据集
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    
    # 构建多层卷积网络
    # 权重及偏置初始化, ReLU神经元 用一个较小的正数来初始化偏置项来打破对称性以及避免0梯度
    def weight_variable(shape):
        """
        :param shape:二维tensor,第一个维度代表层中权重变量所连接(connect from)的单元数目,
        第二个维度代表层中权重变量所连接(connect to)到的单元数量
        :return: W
        """
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    
    # 卷积及池化
    def conv2d(x, W):
        """
        卷积
        :param x:
        :param W:
        :return:
        """
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")
    
    
    def max_pool_2x2(x):
        """
        最大池化
        :param x:
        :return:
        """
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
    
    
    def compute_accuracy(v_xs, v_ys):
        """ 计算的准确率 """
        global prediction  # prediction value
        y_pre = sess.run(prediction, feed_dict={xs: v_xs})
        # 与期望的值比较 bool
        correct_pre = tf.equal(tf.argmax(y_pre, 1), tf.argmax(ys, 1))
        # 将bools转化为数字
        accuracy = tf.reduce_mean(tf.cast(correct_pre, tf.float32))
        result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
        return result
    
    
    # 数据图片
    xs = tf.placeholder("float", shape=[None, 784])  # size 28 * 28 =784
    # 预期概率
    ys = tf.placeholder("float", shape=[None, 10])  # 10: 矩阵维度(分类)
    keep_prob = tf.placeholder(tf.float32)
    x_image = tf.reshape(xs, [-1, 28, 28, 1])  # -1: 任意数量的图片; 28*28:图片的长宽; 1:灰色图片为1
    
    # layer1
    W_conv1 = weight_variable([5, 5, 1, 32])  # 5*5:patch过滤长宽, 1:起始输入一张图片, 32:out_size
    b_conv1 = bias_variable([32])  # 32:上层输入的out_size
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)  # output_size=28*28*32
    h_pool1 = max_pool_2x2(h_conv1)  # output_size=14*14*32 pool_strdes=2
    
    # layer2
    W_conv2 = weight_variable([5, 5, 32, 64])  # 64是训练中不断增加的高度,自定义
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)  # output_size=14*14*64
    h_pool2 = max_pool_2x2(h_conv2)  # output_size=7*7*64 池化的步长为[2,2]
    
    # func1 layer
    W_fc1 = weight_variable([7*7*64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])  # 将pool2铺平为7*7*64
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  # 矩阵相乘
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)  # 防止过拟合
    
    # func2 layer
    W_fc2 = weight_variable([1024, 10])  # 传入的1024, 判断0-9的数字one-hot,10来代表每个数字
    b_fc2 = bias_variable([10])
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)  # softmax分类
    
    # the loss between prediction and really
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1]))
    tf.summary.scalar('loss', cross_entropy)  # 字符串类型的标量张量,包含一个Summaryprotobuf  1.1记录标量
    # training
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)  # AdamOptimizer使用复杂模型
    
    sess = tf.Session()
    sess.run(tf.initialize_all_variables())
    
    
    # start training
    for i in range(1000):
        batch_x, batch_y = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={xs: batch_x, ys: batch_y, keep_prob: 0.1})
        if i % 50 == 0:
            print(compute_accuracy(mnist.test.images, mnist.test.labels))
    print("Training Finished !!!")
  • 相关阅读:
    mdk3 工具使用-表白神器
    Crunch黑客神器-创造个性字典
    centos 自动挂载ISO
    渗透测试工具Nmap从初级到高级
    mui 点击长按复制文本
    JavaScript倒计时并刷新页面
    javascript单一复制粘贴
    jquery定义链接跳转的高亮显示
    JS判断移动端访问设备并加载对应CSS样式
    jquery刷新数据随机排列
  • 原文地址:https://www.cnblogs.com/tangpg/p/9214087.html
Copyright © 2020-2023  润新知