• tensorflow + cnn


    1. CNN(Convolutional Neural Network)卷积神经网络

    示例代码

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    
    # 计算准确度
    def compute_accuracy(v_xs, v_ys):
        global prediction
        y_pre = sess.run(prediction, feed_dict={xs:v_xs})
        correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        result = sess.run(accuracy, feed_dict={xs:v_xs, ys:v_ys})
        return result
    
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')  # stride[1,x,y,1],SAME和原图一样大
    
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  # ksize表示卷积核大小
    
    
    # 数据准备
    xs = tf.placeholder(tf.float32, [None, 784])
    ys = tf.placeholder(tf.float32, [None, 10])
    keep_prob = tf.placeholder(tf.float32)
    x_image = tf.reshape(xs, [-1, 28, 28, 1])  # -1表示这一维大小(即sample数)由计算机自己计算
    print(x_image.shape)  # [n_sample, 28, 28, 1]
    # 搭建神经网络
    # 卷积层 池化层
    W_conv1 = weight_variable([5, 5, 1, 32])  # patch(卷积核大小) 5x5, in size(输入图片厚度) 1, out size(输出图片厚度) 32
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)  # output size 28x28x32
    h_pool1 = max_pool_2x2(h_conv1)  # output size 14x14x32
    # 卷积层 池化层
    W_conv2 = weight_variable([5, 5, 32, 64])  # patch(卷积核大小) 5x5, in size(输入图片厚度) 32, out size(输出图片厚度) 64
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)  # output size 14x14x64
    h_pool2 = max_pool_2x2(h_conv2)  # output size 7x7x64
    # 全连层
    W_f1 = weight_variable([7*7*64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])  # [n_sample,7,7,64] ->> [n_sample, 7*7*64]
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_f1) + b_fc1)
    # h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    # 全连层
    W_f2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    prediction = tf.nn.softmax(tf.matmul(h_fc1, W_f2) + b_fc2)
    
    # 计算损失函数
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1]))
    # 训练
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)  # learning rate = 0.1
    
    # 核心部分
    sess = tf.Session()
    sess.run(tf.initialize_all_variables())  # 初始化所有变量
    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)  # 100个数据一批
        sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})
        if i % 50 == 0:  # 每隔50步输出一次准确度
            print(compute_accuracy(mnist.test.images, mnist.test.labels))

    2. 文件保存

    import tensorflow as tf
    
    # 文件保存
    W = tf.Variable([[1, 2, 3], [3, 4, 5]], dtype=tf.float32, name='weights')
    b = tf.Variable([[1, 2, 3]], dtype=tf.float32, name='biases')
    init = tf.initialize_all_variables()
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(init)
        save_path = saver.save(sess, "my_net/save_net.ckpt")
        print("Save to path:", save_path)

    3. 文件提取

    # 文件提取
    W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.float32, name="weights")
    b = tf.Variable(np.arange(3).reshape((1, 3)), dtype=tf.float32, name="biases")
    # 不用定义init
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, "my_net/save_net.ckpt")
        print("weights:", sess.run((W)))
        print("biases:", sess.run(b))
  • 相关阅读:
    jquery和js常用的遍历数组的方法
    jquery获取某组件距离边框的距离
    jquery获取鼠标移动时的位置
    springboot整合websocket实现登录挤退现象
    使用Gitblit搭建Git服务器教程
    Gradle史上最详细解析
    推荐5个提高Java开发效率的工具
    JBoss7详细配置指南
    XMLBEANS的使用总结
    使用XMLBeans 处理XML
  • 原文地址:https://www.cnblogs.com/syyy/p/8486218.html
Copyright © 2020-2023  润新知